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Abstract

This paper presents an information theory that is based on meanings and rela-
tionships of information. This paper first introduces the very basic concept in our
approach, a binary relation contain between two pieces of information, which is
based on inference between the two pieces of information. Then, based on the con-
tain relation, this paper introduces two basic operations union and intersection on
a collection (i.e., set) of information.

This paper lays the basis of our approach by introducing the core concept, infor-
malogical space. An informalogical space is a collection of information that satisfies
certain conditions represented in terms of the contain relation, and the union and
intersection operations. An informalogical space is similar to a topological space in
symbolic sense, but is different in nature.

This paper also introduces information net in an informalogical space. Informa-
tion net is a generalization of information sequence, just like that net is a general-
ization of sequence in general topology. This paper will build a convergence theory
of information net that is similar to the Moore-Smith convergence in general topol-
ogy in symbolic sense. Then, this paper applies the results on information nets to
information sequences.
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1 Introduction

We are in an era of information explosion, especially after the introduction
of the Internet. To tackle the information explosion, various efforts have been
made to expend the theoretical capacity and application areas of information
theory. (See [3,4,8,9,13,28].) A lot of work has also been done in the related
fields of artificial intelligence and knowledge discovery. (See [24,25,27,29,31–
33,36,38,39,42].) In these fields, a lot of contributions have been made to ma-
chine learning or computational learning. (See [1,2,5,6,17,19,21,24,28,31–34].)

Another related and active field is soft computing. Instead of computing with
numbers, a lot of works have been done to tackle the problem of comput-
ing with words, meaning, inference and reasoning based on meaning. (See
[7,12,14,28,30,35,40,41,49–51].)

In this paper, we will present a theory of information that is based on mean-
ings and relationships of information. In the approach of the current work, no
quantitative measurement is introduced. Instead, the meanings and relation-
ships of information play a central role in the approach of the current work,
such as in judging whether an information sequence converges to some piece
of information.

A basic concept in this approach is the binary relation contain between two
pieces of information. For example, information J contains information I if we
can infer I from J . Thus, contain relation is based on inference between two
pieces of information. In practice, if both J and I are relatively small pieces
of information, then it may well be the case that we cannot infer I from J
alone. However, if an extra piece of information, say K presents, then we can
infer I from J and K combined together. Then, the combination of J and K
can be a new piece of information, L, that contains the information I.

Based on the contain relation, we will introduce two operations on informa-
tion sets: union and intersection. For example, the union of information I and
information J is the sum of the two pieces of information, and the intersec-
tion of information I and information J is the common information that is
contained in each of the two pieces of information.

The core concept of our theory is informalogical space. An informalogical space
is a collection (i.e., set) of information that satisfies two conditions represented
in terms of the binary contain relation, and union and intersection operations.
An informalogical space is similar to a topological space in symbolic struc-
ture, but is different from a topological space in nature. Once the concept
of informalogical space is introduced, our discussions will be performed in
informalogical spaces.
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Based on the contain relation, we can introduce the local structure in an infor-
malogical space, which is the neighborhood system of a piece of information in
an informalogical space. A neighborhood of a piece of information I in an in-
formalogical space contains the information which, judged from the structure
of the informalogical space, are “close” to I with respect to meaning.

After we establish the concept of neighborhood of a piece of information in an
informalogical space, we will be able to naturally introduce the convergence
and limit information of information sequences. Actually, we will start with
establishment of the convergence theory of information net in an informalog-
ical space. Information net is a generalization of information sequence, just
like that net is a generalization of sequence in general topology. Our conver-
gence theory of information net is similar to the Moore-Smith convergence in
general topology in symbolic and terminological sense, but different in nature,
since the notions of “neighborhood” are different in nature. We will apply the
results that we obtain on information nets to information sequences.

In Section 2, we will first introduce a binary relation contain between two
pieces of information. Based on the contain relation, we will introduce two
operations, union and intersection, on a collection of information. Once the
contain relation, and union and intersection operations are introduced, we will
be able to introduce the core concept of our information theory, informalogical
space. We will discuss the similarities in symbolic structure and differences
in nature between a topological space and an informalogical space. All our
subsequent discussions, including those of information net, will be performed
in an informalogical space.

In Section 3, we will build the local structure in an informalogical space, which
is the neighborhood system of a piece of information in an informalogical space.
We will first introduce the concept of information interval in an informalogical
space and prove some properties about information intervals. Then, with the
use of information interval, we will introduce the concept of neighborhood of
a piece of information in an informalogical space. We will prove a property of
neighborhood and introduce the concept of accumulation information of an
information set.

In Section 4, we will introduce the concept of information net, which is a
generalization of information sequence. We will discuss the convergence of an
information net in an informalogical space. We will also introduce a particular
type of informalogical space, separated informalogical space. We will prove
that an informalogical space is separated if and only if every information net
in it has at most one piece of limit information. We will also prove that a piece
of information I is a piece of accumulation information of an information set
A if and only if there exists an information net in A\{I} that converges to I.
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In Section 5, we will introduce the concept of information subnet and cluster
information of an information net. We will prove that a piece of information
I is a piece of cluster information of an information net if and only if the
information net has a subnet that converges to I.

In Section 6, we will discuss a special type of information net, information
sequence. We will also introduce a particular type of informalogical space,
first countable informalogical space. A first countable informalogical space has
good properties for information sequences.

In Section 7, we will briefly discuss some of our future works.

2 Basic Concepts and Informalogical Spaces

Information are things that can be used to eliminate or reduce uncertainty.
In this paper, we use an upper-case letter such as I, J , X, Y , ... to represent
a piece of information. We use an upper-case calligraphic letter such as A, B,
I, U , ... to represent an information set (i.e., a collection of information). The
things that can not be used to eliminate or reduce uncertainty will be called
zero information, and we use 0 will be used to represent both the collective
zero information and a piece of zero information.

We will introduce two operations on an information set, union and intersec-
tion. To make the operations meaningful, we need consistency of information:
assume that I and J are two pieces of information. We say that I and J have
consistency, and we call them consistent information if we cannot infer any
contradictions from the two pieces of information.

In general, let A be a non-void information set. We say that A has consistency,
and we call it a consistent information set if we cannot infer any contradic-
tions from all the information in A. If A is empty, we stipulate that it has
consistency.

For example, information I = “Mr. X is 36 years old.” and information J =
“Mr. X is a software engineer.” are two pieces of consistent information,
whereas information I = “Mr. Y is 5 feet and 8 inches” and information J =
“Mr. Y is 6 feet and 2 inches” are not two pieces of consistent information.

It should be pointed out that here, and in the entire paper, fuzziness is not
taken into consideration. For example, one can have in the fuzzy sense using
the above age example: “Mr. Y is short.” and “Mr. Y is tall.” If Mr. Y is
5’11”, then his tallness (or, shortness) metric may belong equally to both sets’
assertions. In other words, contradiction and consistence can be in degrees.
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The current work is based on regular (or, non-fuzzy) set theory (see [18,20,22]).
It is a limitation of the current work that it does not take fuzziness into
consideration. Future works should consider fuzziness to generate more general
approaches. (For fuzzy set and logic, see [15,16,23,26,37,44–49].)

With the limitation in mind, from now on, we assume that all the information
under consideration are consistent information.

Definition 2.1 Suppose I and J are two pieces of information. If I can be
inferred from J , then we say that information I is contained in information J ,
and we also say that information J contains information I. We use I ≼ J or
J ≽ I to represent this relation. We stipulate that a piece of zero information
is contained in any information.

We say that information I and information J are equal to each other if I ≼ J
and J ≼ I. We use I = J to represent the equality. We write I ̸= J when
information I and information J are not equal.

We say that information I is a piece of subinformation of information J if
I ≼ J . We say that information I is a piece of proper subinformation of
information J if I ≼ J and I ̸= J .

For an example of the contain relation, information I = “There is a table in
the room.” is contained in information J = “There is a black table in the
room.” However, for generally given two pieces of information I and J , it may
well happen that neither I is contained in J nor J is contained in I.

It should be noted that this paper assumes the “inference” applied in Defini-
tion 2.1 has reflexivity and transitivity. In other words, we assume that the
following two assumptions are true.

Assumption 1: I can be inferred from I itself.
Assumption 2: If I can be inferred from J , and J can be inferred from K,
then I can be inferred from K.

If one of the above two assumptions is not true for a particular type of “infer-
ence”, then the discussions of this paper may not apply to cases where that
particular type of “inference” is applied, and in those cases, different and po-
tentially more general discussions need to be formulated. Again, in this paper,
we assume that the above two assumptions are true.

We can have the following theorem by translating the above two assumptions
into the language of Definition 2.1.

Theorem 2.1 Suppose that I, J and K are pieces of information. Then,
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(1) I ≼ I; and
(2) If I ≼ J and J ≼ K, then I ≼ K.

Next, we introduce two basic operations on information, union and intersec-
tion.

Definition 2.2 Let A be a non-void information set, i.e., the members of
A are pieces of information. We use ∨A or ∨{A|A ∈ A} to represent the
smallest one out of all the information that contain every member of A. We
call ∨A the union of all the pieces of information in A, or the union of A
for short. We use ∧A or ∧{A|A ∈ A} to represent the largest one out of all
the information that are contained in every member of A. We call ∧A the
intersection of all the pieces of information in A, or the intersection of A for
short. If A is a void set, we define that the union and intersection of A are
zero information.

An explanation of ∨A is: first, A ≼ ∨A for every A ∈ A; and second, if there
is another piece of information I such that A ≼ I for every A ∈ A, then
∨A ≼ I. Similarly, an explanation of ∧A is: first, ∧A ≼ A for every A ∈ A;
and second, if there is another piece of information I such that I ≼ A for
every A ∈ A, then I ≼ ∧A.

It is obvious that ∨A is the sum of all the pieces of information in the infor-
mation set A, and ∧A is the common information that is contained in every
piece of information in the information set A. For example, I = “XYZ is a
poetess.” and J = “XYZ is a female politician.” are two pieces of information.
The union of I and J is I ∨ J = “XYZ is a poetess and a female politician.”,
and the intersection of I and J is I ∧ J = “XYZ is a woman.”

We have introduced the contain relation between two pieces of information,
and the union and intersection operations on a set of information. The follow-
ing theorem lists two basic properties that are obvious from the definitions.

Theorem 2.2 Suppose that A, B and X are pieces of information. Then,

(1) If A ≼ X and B ≼ X, then A ∨B ≼ X; and
(2) If X ≼ A and X ≼ B, then X ≼ A ∧B.

Next, we will introduce the core concept of our approach, informalogical space.

Definition 2.3 Let S be a non-void information set, and let Ω = ∨S (i.e.,
Ω is the union of all the information in S). Let I be a non-void subset of S
such that ∨I = Ω. We say that I is an informalogy, that S is the space of
the informalogy I, that I is an informalogy for the space S and that the pair
(S, I) is an informalogical space, if the following two conditions hold:
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(1) if I, J ∈ I, then I ∧ J ∈ I; and
(2) if I0 ⊆ I, then ∨I0 ∈ I.

In general topology, topology and topological space are defined as the follow-
ing: “A topology is a family T of sets which satisfies the two conditions: the
intersection of any two members of T is a member of T , and the union of the
members of each subfamily of T is a member of T . The set X = ∪{U : U ∈ T }
is necessarily a member of T because T is a subfamily of itself, and every mem-
ber of T is a subset of X. The set X is called the space of the topology T
and T is a topology for X. The pair (X, T ) is a topological space.” ([22,
p. 37].)

If we translate symbolically the two conditions that the family T of sets must
satisfy to be a topology, then they are:

(1) if A,B ∈ T , then A ∩B ∈ T ; and
(2) if T0 ⊆ T , then ∪T0 ∈ T .

In a symbolic sense, these two conditions are similar to the two conditions in
our Definition 2.3. However, topological space and informalogical space carry
different meanings and natures.

First, the union and intersection of sets and the union and intersection of
information have different natures. That is why we used different symbols ∨
and ∧ for the union and intersection of information. The reason why we did
not use new terminologies is that “union” and “intersection” naturally reflect
the two operations that we defined on information.

Second, the entities in a topological space and the entities in an informalogical
space have different levels of structure. In a topological space (X, T ), T is a
higher level structure on X (i.e., T is a family of subsets of X). However, in
an informalogical space (S, I), I has the same level of structure as S (i.e.,
I is simply a subset of S). We can discuss the intersection of two pieces of
information in S. However, it does not make sense to discuss the intersection
of two points in X.

Third, in a topological space (X, T ), the points in X are the smallest elements.
However, in an informalogical space (S, I), for the information in S, due to
the nature of information, we can discuss decompositions of the information.
Actually, decomposition of information can be very useful in applications,
and we will discuss decompositions of information in future works. General
topology also has the terminology “decomposition”, but it carries different
meaning.

Finally, points in X have no relationship between one another. However, in S,
information have relationships between one another, like one piece of informa-
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tion is contained in another piece of information, and like the intersection of
two pieces of information is non-zero, or the intersection is equal to another
piece of information. In fact, the relationships among information in S is a
major characteristic based on which an informalogical space is built.

Because of symbolic similarities and terminologies that we borrow from gen-
eral topology, with the development of our theory of informalogical space,
there will be concepts and results that have mirror items in general topology
in a symbolic sense, even though they carry different meanings. For exam-
ple, in general topology, “net” is a generalization of sequence. In this paper,
we will borrow the term “net” and introduce “information net,” which is a
generalization of information sequence. Of course, because of the difference in
nature, there will also be concepts and results that do not have mirror items
in general topology even in symbolic sense.

We can see from Definition 2.3 that, when the informalogical space (S, I)
is given, the information Ω = ∨S is known. We give Ω a special name, the
reference information for the space S. In future, we may need to refer to Ω
when we introduce some concepts. At that time, we may extend the notation
(S, I) to (Ω,S, I). However, in this paper, (S, I) is enough, and we will use
it throughout the paper.

From now on, our discussions will be exclusively in an informalogical space. It
is clear from the definition that the space S is meant to include all the pieces
of information under discussion. We will use both a piece of information in
the space and simply a piece of information to represent a member of S. We
will also use both an information set in the space and simply an information
set to represent a subset of S. It should be noted that a piece of information
in the space may not be a member of the informalogy I, and an information
set in the space may not be a subset of the informalogy I.

It is easy to see that for the same space, we can have different informalogies,
and for the same informalogy, we can have different spaces.

The first condition in Definition 2.3 means that the intersection of two mem-
bers of the informalogy is still a member of the informalogy. Actually, inferred
from this, we know that the intersection of any finite number of members of
the informalogy is still a member of the informalogy. The second condition in
Definition 2.3 means that the union of any subset of an informalogy is still a
member of the informalogy. This obviously implies that the union of any finite
number of members of the informalogy is still a member of the informalogy.
Furthermore, the void set ϕ and the informalogy I itself are two subsets of I,
and we know that ∨ϕ = 0 and ∨I = Ω. Thus, any informalogy contains 0, the
zero information, and Ω, the reference information for the space S. We know
that I is a subset of S. Therefore, the space S must also contain 0 and Ω.
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Definition 2.4 Let S be any non-void information set that contains 0 and
Ω, where Ω = ∨S. The smallest possible informalogy for the space S is I =
{0,Ω}. This informalogy I is called the trivial informalogy for the space S.

3 Neighborhoods of A Piece of Information

In this section, we will build the local structure in an informalogical space,
which is the neighborhood system of a piece of information in the space.
First, we will introduce the concept of information interval and prove some
properties of information intervals. Then, we will define neighborhood of a
piece of information in the space. Finally, we will introduce accumulation
information of an information set in the space.

Definition 3.1 Let (S, I) be an informalogical space. Let X and Y be two
members of the informalogy I. We denote [X, Y ] ≡ {I|I ∈ S and X ≼ I ≼
Y }. [X,Y ] is an information set which contains all the information in S that
range from the lower endpoint X to the upper endpoint Y . We call [X,Y ] an
information interval in the informalogical space (S, I), or simply call it an
interval. When [X, Y ] is non-void, we call it a non-void interval; when [X, Y ]
is void, we call it a void interval, and we use θ to denote a void interval.

When both [X1, Y1] and [X2, Y2] are information intervals, and [X1, Y1] ⊆
[X2, Y2], we say that [X1, Y1] is a subinterval of [X2, Y2].

A set of intervals is called a family of intervals, or an interval family. We
often use U to represent an interval family.

In case where no confusion is likely to result, we may simply use a single letter
like U , V , etc. to represent an information interval. However, it should be kept
in mind that an information interval is not a single piece of information, but
a set of information.

Lemma 3.1 Suppose that [X, Y ], [X1, Y1] and [X2, Y2] are information inter-
vals in the informalogical space (S, I). Then,

(1) [X,Y ] is non-void if and only if X ≼ Y ;
(2) [X,Y ] is non-void if and only if X, Y ∈ [X,Y ];
(3) if [X1, Y1] and [X2, Y2] are two non-void intervals, then, [X1, Y1] = [X2, Y2]

if and only if X1 = X2 and Y1 = Y2; and
(4) if [X1, Y1] and [X2, Y2] are two non-void intervals, then, [X1, Y1] ⊆ [X2, Y2]

if and only if X2 ≼ X1 ≼ Y1 ≼ Y2.

Proof
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(1) When [X,Y ] is non-void, by Definition 3.1, there is I ∈ S such that
X ≼ I ≼ Y . By 2 of Theorem 2.1, X ≼ Y . When X ≼ Y , by 1 of
Theorem 2.1, we have X ≼ X ≼ Y , and thus X ∈ [X,Y ] since X ∈ S.
Similarly, we have Y ∈ [X, Y ]. This means that [X,Y ] is non-void.

(2) When [X, Y ] is non-void, then, by 1, X ≼ Y . Then, by 1 of Theorem 2.1,
X ≼ X ≼ Y and X ≼ Y ≼ Y . Thus, X, Y ∈ [X, Y ] since X, Y ∈ S.
When X, Y ∈ [X, Y ], [X,Y ] is obviously non-void.

(3) Since [X1, Y1] and [X2, Y2] are non-void, by 2, X1, Y1 ∈ [X1, Y1] and
X2, Y2 ∈ [X2, Y2].
When [X1, Y1] = [X2, Y2], we will have X1, Y1 ∈ [X2, Y2]. Thus, X2 ≼

X1 and Y1 ≼ Y2. Similarly, we haveX2, Y2 ∈ [X1, Y1] that impliesX1 ≼ X2

and Y2 ≼ Y1. Therefore, X1 = X2 and Y1 = Y2.
When X1 = X2 and Y1 = Y2, it is obvious that [X1, Y1] = [X2, Y2].

(4) Since [X1, Y1] is non-void, by 1 and 2, X1 ≼ Y1, and X1, Y1 ∈ [X1, Y1].
When [X1, Y1] ⊆ [X2, Y2], we have X1, Y1 ∈ [X2, Y2]. Thus, X2 ≼ X1 ≼

Y2 and X2 ≼ Y1 ≼ Y2. By 2 of Theorem 2.1, X2 ≼ X1 ≼ Y1 ≼ Y2.
When X2 ≼ X1 ≼ Y1 ≼ Y2, for each I ∈ [X1, Y1], we have X1 ≼ I ≼ Y1.

Then, by 2 of Theorem 2.1, we have X2 ≼ I ≼ Y2 since X2 ≼ X1 and
Y1 ≼ Y2. That is, for each I ∈ [X1, Y1], we have I ∈ [X2, Y2]. Thus,
[X1, Y1] ⊆ [X2, Y2].

2

We know from the definition of information interval that an interval is a special
information set, i.e., all the information in S ranging from the piece of lower
endpoint information to the piece of upper endpoint information. It is obvious
that not every information set can be an information interval.

Now, suppose [X1, Y1] and [X2, Y2] are two information intervals. As two in-
formation sets, they have an intersection set [X1, Y1] ∩ [X2, Y2]. The following
theorem will show that [X1, Y1] ∩ [X2, Y2] is also an information interval.

Theorem 3.1 Suppose [X1, Y1] and [X2, Y2] are two information intervals.
Then, as two information sets, their intersection set [X1, Y1]∩ [X2, Y2] is also
an information interval, and

[X1, Y1] ∩ [X2, Y2] = [X1 ∨X2, Y1 ∧ Y2].

Proof It is obvious that X1 ∨X2 and Y1 ∧ Y2 are two members of the infor-
malogy, since X1, X2, Y1 and Y2 are all members of the informalogy.

(1) SupposeX1∨X2 ≼ Y1∧Y2 is not true. Then, [X1∨X2, Y1∧Y2] is a void set.
On the other hand, we show [X1, Y1]∩[X2, Y2] is also a void set. Otherwise,
there is a piece of information I such that I ∈ [X1, Y1] ∩ [X2, Y2]. That
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means, X1 ≼ I ≼ Y1 and X2 ≼ I ≼ Y2, and by 1 and 2 of Theorem 2.2,
X1 ∨X2 ≼ I ≼ Y1 ∧ Y2. Then, by 2 of Theorem 2.1, X1 ∨X2 ≼ Y1 ∧ Y2.
However, this is contradictory to the assumption that X1 ∨X2 ≼ Y1 ∧ Y2

is not true. Thus, [X1, Y1] ∩ [X2, Y2] is also a void set.
(2) SupposeX1∨X2 ≼ Y1∧Y2 is true. Then by Lemma 3.1, [X1∨X2, Y1∧Y2] is

a non-void information interval. Let I ∈ [X1∨X2, Y1∧Y2]. Then,X1∨X2 ≼
I ≼ Y1 ∧ Y2, and by Definition 2.2, X1 ≼ I ≼ Y1 and X2 ≼ I ≼ Y2. That
is, I ∈ [X1, Y1] and I ∈ [X2, Y2], which implies I ∈ [X1, Y1] ∩ [X2, Y2].
In other words, we proved that [X1, Y1] ∩ [X2, Y2] is a non-void set, and
[X1∨X2, Y1∧Y2] ⊆ [X1, Y1]∩ [X2, Y2]. Next, we show [X1, Y1]∩ [X2, Y2] ⊆
[X1 ∨ X2, Y1 ∧ Y2]. Let J ∈ [X1, Y1] ∩ [X2, Y2]. Then, J ∈ [X1, Y1] and
J ∈ [X2, Y2], which implies J ∈ S, X1 ≼ J ≼ Y1 and X2 ≼ J ≼ Y2. Thus,
by 1 and 2 of Theorem 2.2, J ∈ S and X1 ∨ X2 ≼ J ≼ Y1 ∧ Y2, which
means J ∈ [X1∨X2, Y1∧Y2]. Thus, [X1, Y1]∩ [X2, Y2] ⊆ [X1∨X2, Y1∧Y2].
Combining the above, we have [X1, Y1] ∩ [X2, Y2] = [X1 ∨X2, Y1 ∧ Y2] is
a non-void interval.

2

With Theorem 3.1 established, we can introduce the following definition of
intersection interval.

Definition 3.2 Suppose [X1, Y1] and [X2, Y2] are two information intervals.
We say that the interval [X1, Y1]∩[X2, Y2] = [X1∨X2, Y1∧Y2] is the intersection
interval of [X1, Y1] and [X2, Y2], or simply call it their intersection.

When [X1, Y1]∩ [X2, Y2] = θ, we say that the intervals [X1, Y1] and [X2, Y2] are
disjoint with each other; when [X1, Y1]∩ [X2, Y2] ̸= θ, we say that the intervals
[X1, Y1] and [X2, Y2] intersect each other.

In fact, by repeatedly applying Theorem 3.1, the the statement of Theorem 3.1
can be generalized to any finite number of intervals. Thus, the definition of
intersection interval can be generalized to any finite number of intervals. For
a finite number of intervals [X1, Y1], [X2, Y2], ..., [Xn, Yn], their intersection in-
terval is ∩n

i=1[Xi, Yi] = [∨n
i=1Xi,∧n

i=1Yi]. However, it should also be aware that
the statement of Theorem 3.1 cannot be generalized to for an infinite number
of intervals, since for infinite number of intervals, say, [X1, Y1], [X2, Y2], ...,
[Xn, Yn], ..., the intersection ∧∞

i=1Yi may not be a member of the informal-
ogy I, and thus [∨∞

i=1Xi,∧∞
i=1Yi] may not be an information interval in the

informalogical space.

As we mentioned before, sometimes we simply use a single letter, like U to
denote an information interval.

Lemma 3.2 Suppose U , U1, U2 and U3 are information intervals. Then
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(1) U ⊆ U ;
(2) If U1 ⊆ U2 and U2 ⊆ U1, then U1 = U2;
(3) If U1 ⊆ U2 and U2 ⊆ U3, then U1 ⊆ U3;
(4) U1 ∩ U2 ⊆ U1 and U1 ∩ U2 ⊆ U2; and
(5) If I is a piece of information, I ∈ U1 and U1 ⊆ U2, then I ∈ U2.

Information intervals are information sets, and thus, all the statements in
Lemma 3.2 are inherited from set theory.

Next we will introduce the concept of neighborhood.

Definition 3.3 Let (S, I) be an informalogical space, and let I ∈ S. Let
[X, Y ] be a non-void interval in the informalogical space. If I ∈ [X,Y ], which
means X ≼ I ≼ Y , we say that the interval [X,Y ] is an I-neighborhood, or
neighborhood for short, of I, and we use U(I)[X,Y ] to denote this relationship.
We can simply use [X,Y ], U(I) or U to denote a neighborhood if no confusions
seem possible.

Definition 3.4 We say that the family of all neighborhoods of a piece of in-
formation I is the neighborhood system of I, and we often use UI to denote
the neighborhood system of I.

If U0 ⊆ UI , and every neighborhood of I contains a member of U0 as subinter-
val, then we say that U0 is a base for the neighborhood system of I, or a local
base at I.

It is obvious that, in the informalogical space (S, I), the information interval
[0,Ω] is a neighborhood of any piece of information in the space, where Ω is
the reference information for the space. Thus, the neighborhood system of any
piece of information is non-void.

Theorem 3.2 The intersection of any finite number of neighborhoods of a
piece of information is still a neighborhood of that piece of information.

Proof Suppose [X1, Y1], [X2, Y2], ..., [Xn, Yn] ∈ UI . Then, Xi ≼ I ≼ Yi for i =
1, 2, ..., n, and consequently, by 1 and 2 of Theorem 2.2, ∨n

i=1Xi ≼ I ≼ ∧n
i=1Yi.

This implies that ∩n
i=1[Xi, Yi] = [∨n

i=1Xi,∧n
i=1Yi] is really a neighborhood of

I. 2

Using neighborhood, we can introduce the concept of accumulation informa-
tion.

Definition 3.5 Let A be an information set in the space. Let I be a piece of
information in the space. We say that I is a piece of I-accumulation informa-
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tion, or a piece of accumulation information for short, of the information set
A if every neighborhood of I contains a member of A that is different from I
itself.

4 Information Nets and Convergence

In this section, we will introduce the concept of information net. Information
net is a generalization of information sequence. We will discuss the convergence
of information nets in an informalogical space. The convergence of information
nets is similar to the Moore-Smith convergence in general topology in that, for
all major results of Moore-Smith convergence in general topology, we obtained
similar results for the convergence of information net in an informalogical
space. For Moore-Smith convergence in general topology, see [22, Chapter 2].

Like Moore-Smith convergence of nets in general topology, we need the concept
of directed set. Directed set is a generalization of the natural numbers 1, 2, 3,
... with the natural order. The following definition comes from [22, Chapter
2].

Definition 4.1 We say that a binary relation ≥ directs a set D, and that the
pair (D,≥) is a directed set, if D is non-void, and

(1) if m, n and p are members of D such that m ≥ n and n ≥ p, then m ≥ p;
(2) if m ∈ D, then m ≥ m; and
(3) if m and n are members of D, then there is p in D such that p ≥ m and

p ≥ n.

Theorem 4.1 Suppose I is a piece of information in the space, and UI is its
neighborhood system. Then, (UI ,⊆) is a directed set, where ⊆ is the normal
subset relation.

Proof Notice that [0,Ω] is a neighborhood of I, where Ω is the reference
information for the space. Thus, UI is non-void.

Suppose U1, U2, U3 ∈ UI such that U1 ⊆ U2 and U2 ⊆ U3. Then, by Lemma 3.2,
U1 ⊆ U3. For U ∈ UI , also by Lemma 3.2, U ⊆ U . Suppose that U1 and U2 are
two members of UI . Let V = U1 ∩ U2. Then, by Theorem 3.2, V is a member
of UI , and by Lemma 3.2, V ⊆ U1 and V ⊆ U2.

Now, we know that (UI ,⊆) is really a directed set. 2

To analyze the convergence of an information net, we also need the concept of
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product directed set of two directed sets. The following notions and Lemma 4.1
about product directed set all come from [22, Chapter 2].

Suppose (D1,≥1) and (D2,≥2) are two directed sets, and let D = D1×D2 be
the Cartesian product of D1 and D2. We can construct a binary relation ≥ on
D as the following: For (m1, n1) ∈ D and (m2, n2) ∈ D, (m1, n1) ≥ (m2, n2)
if and only if m1 ≥1 m2 and n1 ≥2 n2. Here, m1,m2 ∈ D1 and n1, n2 ∈ D2.
The relation ≥ is called product order of ≥1 and ≥2, and the product order
≥ is also called product relation in this paper to indicate the fact that it is a
“product” of two binary relations.

Lemma 4.1 The product relation ≥ directs the Cartesian product D = D1 ×
D2, and thus, (D1 ×D2,≥) is a directed set.

(D1 ×D2,≥) is called the product directed set of (D1,≥1) and (D2,≥2).

With the above preparations completed, we will introduce the concepts of
information net and its convergence in an informalogical space.

Definition 4.2 Let (S, I) be an informalogical space, (D,≥) be a directed
set and T be a function on D whose values are pieces of information in the
space. That means, for each n ∈ D, there is one and only one Tn ∈ S that
corresponds to n. Then, {Tn, n ∈ D,≥} is called an information net in the
space S. In case where no confusion seems possible, we simply use {Tn, n ∈ D}
or {Tn} to denote an information net.

Definition 4.3 Let {Tn, n ∈ D,≥} be an information net, and [X, Y ] be an
information interval. Then

(1) we say that the information net {Tn, n ∈ D,≥} is in the information
interval [X,Y ] if Tn ∈ [X, Y ] for every n ∈ D;

(2) we say that the information net {Tn, n ∈ D,≥} is eventually in the infor-
mation interval [X, Y ] if there is m ∈ D such that Tn ∈ [X, Y ] for every
n ∈ D that satisfies n ≥ m; and

(3) we say that the information net {Tn, n ∈ D,≥} is frequently in the in-
formation interval [X, Y ] if for every m ∈ D there is n ∈ D such that
n ≥ m and Tn ∈ [X, Y ].

Definition 4.4 Let (S, I) be an informalogical space, {Tn, n ∈ D,≥} be an
information net in the space, and I be a piece of information in the space. We
say that the information net {Tn, n ∈ D,≥} converges to the information I in
the informalogical space (S, I), or say that {Tn, n ∈ D,≥} I-converges to I,
if the information net {Tn, n ∈ D,≥} is eventually in every neighborhood of I.
Information I is called a piece of I-limit information of the information net
{Tn, n ∈ D,≥} if {Tn, n ∈ D,≥} I-converges to I. When no confusion seems
possible, for short, we simply say that the information net {Tn, n ∈ D,≥}
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converges to information I, and information I is a piece of limit information
of the information net {Tn, n ∈ D,≥}.

It is worthy to point out that an information net may converge to more than
one piece of limit information: Let S be a non-void information set that con-
tains 0 and Ω = ∨S. Let I = {0,Ω} be the trivial informalogy for the space
S. Then, in this informalogical space (S, I), every information net converges
to every piece of information in the the space S. This simple example shows
that, generally, there is no uniqueness of limit information. However, in a sep-
arated informalogical space we will introduce below, and only in a separated
informalogical space, the limit information of every information net, if exists,
is unique.

Definition 4.5 Let (S, I) be an informalogical space. We say that (S, I) is
a separated informalogical space, or say that it is separated, if for every two
distinct pieces of information I and J in the space, i.e., I, J ∈ S and I ̸= J ,
there exist neighborhoods U and V of I and J , respectively, such that U∩V = θ.

Lemma 4.2 Let U and V be two information intervals. Then, U1 ∩U2 ̸= θ if
and only if there is a piece of information I ∈ S such that I ∈ U1 and I ∈ U2.

This lemma is obvious.

Theorem 4.2 An informalogical space is separated if and only if every infor-
mation net in the space has at most one piece of limit information.

Proof Assume the informalogical space (S, I) is separated. Suppose I, J ∈ S
and I ̸= J . Then, there are neighborhoods U and V of I and J , respectively,
such that U ∩V = θ. By Lemma 4.2, an information net cannot be eventually
in both U and V . Thus, an information net cannot converge to both I and J .

To establish the converse, assume (S, I) is not separated. We will construct
an information net that converges to two distinct pieces of information. Since
(S, I) is not separated, there exist two distinct pieces of information I and J in
the space such that every neighborhood U of I intersects every neighborhood
V of J . By Lemma 4.2, we can select a piece of information T(U,V ) ∈ S such
that T(U,V ) ∈ U and T(U,V ) ∈ V . Let UI be the neighborhood system of I, and
UJ be the neighborhood system of J . By Theorem 4.1, (UI ,⊆) and (UJ ,⊆) are
two directed sets. By Lemma 4.1, we can denote (UI ×UJ ,≥) as their product
directed set. Then, {T(U,V ), (U, V ) ∈ UI × UJ ,≥} is an information net in the
space. Next, we will show that the information net {T(U,V ), (U, V ) ∈ UI×UJ ,≥}
converges to both I and J .

In fact, for every neighborhood U of I and every neighborhood V of J , we have
(U, V ) ∈ UI ×UJ . For every (U ′, V ′) ∈ UI ×UJ that satisfies (U ′, V ′) ≥ (U, V ),
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we have U ′ ⊆ U and V ′ ⊆ V . We know T(U ′,V ′) ∈ U ′ and T(U ′,V ′) ∈ V ′ from
the selection of T(U ′,V ′). Thus, T(U ′,V ′) ∈ U and T(U ′,V ′) ∈ V . This means
that the information net {T(U,V ), (U, V ) ∈ UI × UJ ,≥} is eventually in every
neighborhood U of I and every neighborhood V of J , and consequently, the
information net converges to both I and J . 2

We introduced the concept of accumulation information of an information set
at the end of Section 3. Our next theorem establishes the relationship between
a piece of accumulation information of an information set and convergence of
an information net.

Theorem 4.3 A piece of information I is a piece of accumulation informa-
tion of an information set A if and only if there exists an information net in
A \ {I} that converges to I.

Proof Assume I is a piece of accumulation information of A. Let UI be the
neighborhood system of I. Then, for every U ∈ UI , U contains a member of A
other than I itself. We denote this member of A as TU . Then, it is clear that
TU ∈ A \ {I} and TU ∈ U . By Theorem 4.1, (UI ,⊆) is a directed set. Thus,
{TU , U ∈ UI ,⊆} is an information net in A \ {I}.

For every neighborhood U of I, namely U ∈ UI , when V ∈ UI that satisfies
V ⊆ U , we have TV ∈ U since TV ∈ V and V ⊆ U . This means that the
information net {TU , U ∈ UI ,⊆} is eventually in every neighborhood U of I,
and consequently, this information net converges to I.

To establish the converse, assume that there exists an information net {Tn, n ∈
D,≥} in A \ {I} that converges to I. Then, for every neighborhood U of I,
there is p ∈ D such that Tn ∈ U for every n ∈ D that satisfies n ≥ p.
Since, by the definition of a directed set, p ≥ p, we have Tp ∈ U . We know
that Tp ∈ A \ {I}. Thus, Tp ̸= I. This means that every neighborhood of I
contains a member of A other than I itself, and consequently, I is a piece of
accumulation information of A. 2

5 Information Subnets

First, we introduce the concepts of information subnet and cluster information.
Then, we prove a theorem that establishes the relationship between cluster
information and convergence of information subnets.

Definition 5.1 Let {Tn, n ∈ D,≥} and {Rm,m ∈ E,≥1} be two information
nets. We say that {Tn, n ∈ D,≥} is an information subnet, or subnet for
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short, of {Rm,m ∈ E,≥1} if there exists a function N on D with values in E
such that

(1) T = R •N , or equivalently, Tn = RNn for each n ∈ D, where “•” is the
function composition; and

(2) for each m ∈ E, there is p ∈ D such that if n ≥ p, then, Nn ≥1 m.

Definition 5.2 We say that a piece of information I is a piece of cluster in-
formation of an information net {Tn} if the information net {Tn} is frequently
in every neighborhood of I.

A piece of cluster information of an information net is different from a piece
of accumulation information of an information set. To be a piece of accumu-
lation information of an information set, every neighborhood of that piece of
information should contain a member of the information set that is different
from that piece of information itself. However, to be a piece of cluster infor-
mation of an information net, that distinction is not required. For example,
let Tn ≡ I for each n ∈ D, where (D,≥) is a directed set and I is a piece of
information. Then, I is a piece of cluster information of the information net
{Tn, n ∈ D,≥}. However, I is not a piece of accumulation information of the
information set {Tn|n ∈ D}.

Lemma 5.1 Suppose that {Rm,m ∈ E,≥1} is an information net, I is a piece
of information, and UI is the neighborhood system of I. If the information net
is frequently in every member of UI , then, there is an information subnet of
{Rm,m ∈ E,≥1} that converges to I.

Proof Let U ∈ UI . Since {Rm,m ∈ E,≥1} is frequently in U , for eachm0 ∈ E
there is m ∈ E such that m ≥1 m0 and Rm ∈ U . Let D = {(m,U)|m ∈
E,U ∈ UI and Rm ∈ U}. We define a binary relation ≥ on D as the following:
(m2, U2) ≥ (m1, U1) if and only if m2 ≥1 m1 and U2 ⊆ U1.

First, we show that (D,≥) is a directed set. It is obvious that D is non-void.
If (m3, U3) ≥ (m2, U2) and (m2, U2) ≥ (m1, U1), then, we have m3 ≥1 m2

and m2 ≥1 m1, and U3 ⊆ U2 and U2 ⊆ U1. These imply m3 ≥1 m1 and
U3 ⊆ U1. Thus, (m3, U3) ≥ (m1, U1). It is clear that (m,U) ≥ (m,U), since
m ≥1 m and U ⊆ U . For any two members (m1, U1) and (m2, U2) of D, there
is n

′ ∈ E such that n
′ ≥1 m1 and n

′ ≥1 m2 since (E,≥1) is a directed set.
There is V = U1 ∩ U2 ∈ UI such that V ⊆ U1 and V ⊆ U2. For V ∈ UI and
n

′ ∈ E, since {Rm,m ∈ E,≥1} is frequently in V , there is n ∈ E such that
n ≥1 n

′
and Rn ∈ V . Then, we know 1) (n, V ) ∈ D; 2) (n, V ) ≥ (m1, U1) since

n ≥1 n
′ ≥1 m1 and V ⊆ U1; and 3) (n, V ) ≥ (m2, U2) since n ≥1 n

′ ≥1 m2

and V ⊆ U2. Now we know that (D,≥) is a directed set.
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Second, we construct a subnet of {Rm,m ∈ E,≥1} as the following: For each
(m,U) ∈ D, let N(m,U) = m and T(m,U) = Rm. Then, T = R • N . For each
n ∈ E and the neighborhood U0 ≡ [0,Ω] of I, since the net {Rm,m ∈ E,≥1}
is frequently in U0, there is p ∈ E such that p ≥1 n and Rp ∈ U0. Then,
(p, U0) ∈ D. For any (m,U) ∈ D that satisfies (m,U) ≥ (p, U0), we have
N(m,U) = m ≥1 p ≥1 n. Now we know that {T(m,U), (m,U) ∈ D,≥} is a really
subnet of {Rm,m ∈ E,≥1}.

Finally, we show that the net {T(m,U), (m,U) ∈ D,≥} converges to I. For every
neighborhood V ∈ UI , since {Rm,m ∈ E,≥1} is frequently in V , there is p ∈ E
such that Rp ∈ V . Thus, (p, V ) ∈ D. If (m,U) ∈ D and (m,U) ≥ (p, V ), then
T(m,U) = Rm ∈ U ⊆ V , and consequently, T(m,U) ∈ V . This means that the
information net {T(m,U), (m,U) ∈ D,≥} is eventually in every neighborhood
V of I. Thus, the net {T(m,U), (m,U) ∈ D,≥} converges to I. 2

Theorem 5.1 A piece of information I is a piece of cluster information of
an information net {Rm,m ∈ E,≥1} if and only if the information net has a
subnet that converges to I.

Proof Suppose that I is a piece of cluster information of {Rm,m ∈ E,≥1}.
Then, {Rm,m ∈ E,≥1} is frequently in every neighborhood of I. Thus, by
Lemma 5.1, the information net has a subnet that converges to I.

To establish the converse, suppose that {Rm,m ∈ E,≥1} has a subnet {Tn, n ∈
D,≥} that converges to I. Then, for every neighborhood U of I, there is
p1 ∈ D such that if n ∈ D and n ≥ p1, then Tn ∈ U . For every m ∈ E, since
{Tn, n ∈ D,≥} is a subnet of {Rm,m ∈ E,≥1}, there is p2 ∈ D such that if
n ∈ D and n ≥ p2, then Nn ≥1 m.

Let’s go back to D. Since (D,≥) is a directed set, for p1 ∈ D and p2 ∈ D, there
is q ∈ D such that q ≥ p1 and q ≥ p2. Then, we have Tq ∈ U since q ≥ p1,
and we have Nq ≥1 m since q ≥ p2. Let m

′
= Nq. Then, we have m

′ ∈ E,
m

′ ≥1 m and Rm′ = RNq = Tq ∈ U . That means, for every neighborhood U
of I and every m ∈ E, there is m

′ ∈ E such that m
′ ≥1 m and Rm

′ ∈ U .
Thus, {Rm,m ∈ E,≥1} is frequently U . Consequently, I is a piece of cluster
information of the information net {Rm,m ∈ E,≥1}. 2

6 Information Sequences

In this section, we will discuss a special type of information nets, information
sequence.
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Definition 6.1 We say that an information net {Tn, n ∈ D,≥} is an infor-
mation sequence if there is a bijective map between D and the set of positive
integers {1, 2, 3, ...} that preserves the order. That is, suppose f is the bijective
map from D to {1, 2, 3, ...}, then for any n1, n2 ∈ D, n1 ≥ n2 in D if and only
if f(n1) ≥ f(n2) in {1, 2, 3, ...}.

Without loss of generality, in what follows, we assume thatD = {1, 2, ..., n, ...},
and ≥ is the usual order of positive integers. We can write an information se-
quence as {T1, T2, ..., Tn, ...}. For simplicity, we often simply write {T1, T2, ..., Tn, ...}
as {Tn}.

Definition 6.2 Let {Tn} and {Rm} be two information sequences. We say
that {Tn} is an information subsequence, or subsequence for short, of {Rm},
if, viewed as two information nets, {Tn} is a subnet of {Rm}.

If {Tn} is an information subsequence of {Rm}, then there is a function N
on positive integers and values in positive integers such that Ti = RNi

for
i = 1, 2, ..., n, ..., and for each positive integer m, there is positive integer n
such that if i ≥ n, then Ni ≥ m.

In Section 3, we have introduced the concept of base of the neighborhood
family of a piece of information I, or in other words, the local base at I. Now,
we use that concept to define a particular type of informalogical spaces, first
countable informalogical spaces. A first countable informalogical space has
good properties for information sequences.

Definition 6.3 Let (S, I) be an informalogical space. We say that the in-
formalogical space is first countable if the neighborhood family of each piece
of information in the space has a countable base. In other words, there is a
countable local base at each piece of information in the space.

A set is countable means that there exists a bijective map from that set to
the set of positive integers {1, 2, 3, ...}. For an example, the set of all integers
is countable. For another example, the set of all real numbers is uncountable,
since it is impossible to establish any bijective map between the set of all real
numbers and the set of positive integers. Also, the set of all subsets of the
set of positive integers is uncountable. For information about computability
theory, see [10,11,43].

Theorem 6.1 Suppose that the informalogical space (S, I) is first countable,
I is a piece of information in the space, A is an information set in the space,
and {Rm} is an information sequence in the space. Then

(1) I is a piece of accumulation information of A if and only if there is an
information sequence in A \ {I} that converges to I; and

(2) I is a piece of cluster information of {Rm} if and only if {Rm} has a
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subsequence that converges to I.

Proof Since (S, I) is first countable, we can assume that {U1, U2, ..., Un, ...}
is a local base at I. Then, for n = 1, 2, 3, ..., we define Vn ≡ ∩n

i=1Ui. By
Theorem 3.2, V1, V2, ..., Vn, ... are also neighborhoods of I. It is obvious that
... ⊆ Vn+1 ⊆ Vn ⊆ ... ⊆ V2 ⊆ V1. Also, Vn ⊆ Un for n = 1, 2, 3, .... Thus,
{V1, V2, ..., Vn, ...} is also a local base at I.

(1) Suppose I is a piece of accumulation information of A. Then, for each
Vn, there is Tn ∈ A \ {I} such that Tn ∈ Vn, and consequently, we
obtain an information sequence {T1, T2, ..., Tn, ...} in A \ {I}. For every
neighborhood U of I, since {V1, V2, ..., Vn, ...} is a local base at I, there
is some Vp such that Vp ⊆ U . Then, when n ≥ p, we have Tn ∈ Vn ⊆
Vp ⊆ U , and thus Tn ∈ U . This means that the information sequence
{T1, T2, ..., Tn, ...} is eventually in every neighborhood of I. Therefore,
{T1, T2, ..., Tn, ...} converges to I.
Since an information sequence is also an information net, the converse

part is established by Theorem 4.3.
(2) Suppose I is a piece of cluster information of the information sequence

{Rm}. Then, for each Vi, there is a positive integer Ni such that Ni ≥ i
and RNi

∈ Vi. Let Ti = RNi
for i = 1, 2, 3, .... It is clear that {Tn} is a sub-

sequence of {Rm}. For every neighborhood U of I, since {V1, V2, ..., Vn, ...}
is a local base at I, there is some Vp such that Vp ⊆ U . Then, when n ≥ p,
we have Tn = RNn ∈ Vn ⊆ Vp ⊆ U , and thus Tn ∈ U . This means that
the information sequence {T1, T2, ..., Tn, ...} is eventually in every neigh-
borhood of I. Therefore, {T1, T2, ..., Tn, ...} converges to I.
Since an information subsequence is also an information subnet, the

converse part is established by Theorem 5.1.

2

7 Future Work

One of our future works will be to continue the theoretical build up in the
informalogical space. For example, we will discuss difference of information and
decompositions of information. As we have mentioned in Section 2, some of
the theoretical build up have mirror concepts in general topology in a symbolic
sense, and others do not.

As already pointed out, the current work does not take fuzziness into con-
sideration. This is a limitation of the current work. Future works should take
fuzziness into consideration to generate more general approaches.
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Application is also an important area of future works.
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