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Abstract

In previous works, we presented a meaning based information theory in which
the core concept is an informalogical space. We did various discussions in
informalogical spaces. We introduced information nets which is a generaliza-
tion of information sequences. We introduced information intervals, neigh-
borhoods of a piece of information, and convergence of information nets. We
built a Moore-Smith style convergence theory in informalogical spaces.

In this paper, we show an undesirable property of convergence of informa-
tion nets in the previous works. Then, we introduce open information inter-
vals, open neighborhoods of a piece of information, and open convergence of
information nets. Open convergence avoids the undesirable property of con-
vergence in the previous works. However, at the same time, we point out a
limitation of open convergence: for open convergence, the Moore-Smith style
convergence theory cannot be established in general informalogical spaces.
The Moore-Smith style convergence theory can only be established in infor-
malogical spaces that satisfy certain conditions.

In this paper, we also introduce open compactness of informalogical spaces
and prove that an informalogical space is open compact if and only if each
information net in the informalogical space has a subnet that open converges.
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1. Introduction

In [1], we presented a meaning based information theory, a theory of in-
formation that is based on meanings of information and relationships among
information. We introduced the core concept of our approach, informalogical
space. We introduced the concept of an information interval in an informa-
logical space and, based on information intervals, we introduced the concept
of a neighborhood of a piece of information in an informalogical space. We in-
troduced the concept of an information net in an informalogical space. Based
on the concept of neighborhood, we built a convergence theory for informa-
tion nets in an informalogical space. The convergence theory is similar to the
Moore-Smith convergence theory in general topology in that, for all major
results of Moore-Smith convergence theory (see [3, Chapter 2]), we obtained
similar results for the convergence of information nets in an informalogical
space.

In [2], based on the concept of information interval, we introduced the
concept of interval cover of an information set in an informalogical space
and, based on the concept of interval cover, we introduced the concept of
a compact informalogical space. We proved that an informalogical space is
compact if and only if each information net in the informalogical space has
a subnet that converges.

In this paper, we show an undesirable property of the convergence of
information nets that was introduced in [1]. We also introduce a new type
of information intervals, and thus introduce a new type of neighborhoods of
a piece of information in an informalogical space. Based on the new type of
neighborhoods, we introduce a new type of convergence of information nets in
an informalogical space. The new type of convergence avoids the undesirable
property and under certain conditions the new type of convergence preserves
all results of the convergence in [1].

Also, based on the new type of information intervals, we introduce a new
type of interval covers of an information set in an informalogical space and
thus introduce a new type of compactness of informalogical spaces. For the
new type of compactness and convergence, we prove that an informalogical
space is compact if and only if each information net in the informalogical
space has a subnet that converges.

Before showing an undesirable property of the convergence of information
nets in [1] and introducing a new type of convergence for information nets,
we revisit some relevant concepts that were introduced in [1].
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The contain relation between two pieces of information, and the union
and intersection operations on information were introduced in [1]. Basically,
suppose I and J are two pieces of information. If I can be inferred from J ,
then information I is contained in information J , and we can also say that
information J contains information I. This relation is represented as I ≼ J
or J ≽ I.

As for the union and intersection operations on a non-empty information
set A, basically, the union ∨A is the sum of all the pieces of information in
the information set A, and the intersection ∧A is the common information
that is contained in each piece of information in the information set A.

Below is the core concept of our approach, informalogical space, which
was introduced in [1].

Definition 1.1. ([1]) Let S be a non-empty information set, and let Ω = ∨S
(i.e., Ω is the union of all the information in S). Let I be a non-empty subset
of S such that ∨I = Ω. We say that I is an informalogy, that S is the space
of the informalogy I, that I is an informalogy for the space S and that the
pair (S, I) is an informalogical space, if the following two conditions hold:

1. if I, J ∈ I, then I ∧ J ∈ I; and
2. if I0 ⊆ I, then ∨I0 ∈ I.

After revisit of the above basic concepts, we revisit two theorems in [2]
that contain some basic properties of information and information sets. As
the same as assumed in [1] and [2], in this paper, all pieces of information
under discussion are consistent information.

Theorem 1.1. ([2]) Suppose that A, B, X and Y are pieces of information,
and 0 is the zero information. Then,

1. A ≼ A;

2. if X ≼ A and A ≼ Y , then X ≼ Y ;

3. if A ≼ X and B ≼ X, then A ∨B ≼ X;

4. if X ≼ A and X ≼ B, then X ≼ A ∧B;

5. A ∧B ≼ A ∨B;

6. A ∨B = B ∨ A, A ∧B = B ∧ A;

7. if X ≼ A and Y ≼ B, then X ∨ Y ≼ A ∨B and X ∧ Y ≼ A ∧B;

8. X ∨ (A ∨B) = (X ∨ A) ∨B, X ∧ (A ∧B) = (X ∧ A) ∧B; and
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9. A ≼ B, A ∨B = B and A ∧B = A are equivalent.

Theorem 1.2. ([2]) Suppose that X, A and B are pieces of information,
and A and B are information sets. Then,

1. if A ≼ X for each A ∈ A, then ∨A ≼ X; if X ≼ A for each A ∈ A,
then X ≼ ∧A;

2. if for each A ∈ A, there is B ∈ B such that A ≼ B, then ∨A ≼ ∨B;
3. X ∨ (∨A) = ∨{X ∨ A|A ∈ A}, X ∧ (∧A) = ∧{X ∧ A|A ∈ A}; and
4. (∨A)∨ (∨B) = ∨{A∨B|A ∈ A, B ∈ B}, (∧A)∧ (∧B) = ∧{A∧B|A ∈

A, B ∈ B}.

Next, we revisit the concepts of information interval, or interval for short,
and neighborhood introduced in [1].

Definition 1.2. ([1]) Let (S, I) be an informalogical space. Let X and Y
be two members of the informalogy I. We define [X,Y ] as [X, Y ] ≡ {I|I ∈
S and X ≼ I ≼ Y }. [X, Y ] is an information set which contains all the
information in S that ranges from the lower endpoint X to the upper endpoint
Y . We call [X,Y ] an information interval in the informalogical space (S, I),
or simply an interval. When [X,Y ] is non-empty, we call it a non-empty
interval; when [X, Y ] is empty, we call it an empty interval, and we use θ to
denote an empty interval.

When both [X1, Y1] and [X2, Y2] are information intervals, and [X1, Y1] ⊆
[X2, Y2], we say that [X1, Y1] is a subinterval of [X2, Y2].

A set of intervals is called a family of intervals, or an interval family.
We often use U to represent an interval family.

In cases where no confusion is likely to result, we may simply use a single
letter such as U , V , etc. to represent an information interval. However, it
should be kept in mind that an information interval is not a single piece of
information, but a set of information.

Definition 1.3. ([1]) Let (S, I) be an informalogical space, and let I ∈ S.
Let [X, Y ] be a non-empty interval in the informalogical space. If I ∈
[X, Y ], which means X ≼ I ≼ Y , we say that the interval [X,Y ] is an
I-neighborhood, or neighborhood for short, of I, and we use U(I)[X, Y ] to
denote this relationship. We can simply use [X, Y ], U(I) or U to denote a
neighborhood if no confusion seems possible.
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Next, we revisit the concept of information net in an informalogical space,
and the concept of convergence of information nets in an informalogical space
that were introduced in [1].

Similar to the concept of nets in general topology ([3, Chapter 2]), for
presenting the concept of an information net, we need the concept of a di-
rected set. A directed set is a generalization of the natural numbers 1, 2, 3,
... with the natural order. The following definition comes from [3, Chapter
2].

Definition 1.4. ([3, Chapter 2]) We say that a binary relation ≥ directs a
set D, and that the pair (D,≥) is a directed set, if D is non-empty, and

1. if m, n and p are members of D such that m ≥ n and n ≥ p, then
m ≥ p;

2. if m ∈ D, then m ≥ m; and

3. if m and n are members of D, then there is p in D such that p ≥ m
and p ≥ n.

Below is the definition of an information net in an informalogical space.

Definition 1.5. ([1]) Let (S, I) be an informalogical space, (D,≥) be a di-
rected set and T be a function on D whose values are pieces of information
in the space. That means, for each n ∈ D, there is one and only one Tn ∈ S
that corresponds to n. Then, {Tn, n ∈ D,≥} is called an information net
in the space S. In cases where no confusion would result, we simply use
{Tn, n ∈ D} or {Tn} to denote an information net.

Next, we revisit the concept of convergence of information nets in an
informalogical space that was introduced in [1].

Definition 1.6. ([1]) Let {Tn, n ∈ D,≥} be an information net, and let
[X, Y ] be an information interval. Then

1. we say that the information net {Tn, n ∈ D,≥} is in the information
interval [X,Y ] if Tn ∈ [X, Y ] for every n ∈ D;

2. we say that the information net {Tn, n ∈ D,≥} is eventually in the
information interval [X, Y ] if there is an m ∈ D such that Tn ∈ [X, Y ]
for every n ∈ D that satisfies n ≥ m; and
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3. we say that the information net {Tn, n ∈ D,≥} is frequently in the
information interval [X,Y ] if, for every m ∈ D, there is n ∈ D such
that n ≥ m and Tn ∈ [X, Y ].

Definition 1.7. ([1]) Let (S, I) be an informalogical space, {Tn, n ∈ D,≥}
be an information net in the space, and I be a piece of information in the
space. We say that the information net {Tn, n ∈ D,≥} converges to the
information I in the informalogical space (S, I), or say that {Tn, n ∈ D,≥}
I-converges to I, if the information net {Tn, n ∈ D,≥} is eventually in every
neighborhood of I. The information I is called a piece of I-limit information
of the information net {Tn, n ∈ D,≥} if {Tn, n ∈ D,≥} I-converges to I.
When no confusion would arise, for short, we simply say that the information
net {Tn, n ∈ D,≥} converges to information I, and that the information I
is a piece of limit information of the information net {Tn, n ∈ D,≥}.

With the introduction of information nets and convergence of an infor-
mation net, we established in [1] a convergence theory of information nets in
an informalogical space. That convergence theory is similar to the Moore-
Smith convergence theory in a topological space in that, for all major results
of Moore-Smith convergence in a topological space (see [3, Chapter 2]), we
obtained similar results for the convergence of information nets in an infor-
malogical space.

Now, we show an undesirable property of the convergence of information
nets in Definition 1.7: for an information net {Tn, n ∈ D,≥} to converge
to a piece of information I that is in the informalogy I (i.e., I ∈ I), it is
necessary that there is an m ∈ D such that Tn = I for every n ∈ D that
satisfies n ≥ m, or in other words, Tn needs to be eventually identical to I.
This is shown in the following theorem.

Theorem 1.3. Let (S, I) be an informalogical space, {Tn, n ∈ D,≥} be an
information net in the informalogical space, and I ∈ I. Then, {Tn, n ∈ D,≥}
converges to I if and only if there is an m ∈ D such that Tn = I for every
n ∈ D that satisfies n ≥ m.

Proof. It is obvious from the definitions that {Tn, n ∈ D,≥} converges to
I if there is an m ∈ D such that Tn = I for every n ∈ D that satisfies n ≥ m.
On the other hand, suppose that {Tn, n ∈ D,≥} converges to I. Since I ∈ I,
[I, I] is an information interval. Actually, [I, I] is a neighborhood of I since
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I ∈ [I, I]. Thus, by Definition 1.6 and Definition 1.7, there is an m ∈ D
such that Tn ∈ [I, I] for every n ∈ D that satisfies n ≥ m. Tn ∈ [I, I] means
I ≼ Tn ≼ I, and thus, Tn = I. �

The property that, when I is a member of the informalogy I (i.e., I ∈ I),
Tn needs to be eventually identical to I for the information net {Tn, n ∈ D,≥}
to converge to I is undesirable, since the requirement for the convergence is
too strong. However, it also should be pointed out that this undesirable
property only exists if the information net were to converge to a member of
the informalogy. There is no such an undesirable property for the information
net to converge to a piece of information which is not a member of the
informalogy.

The above undesirable property is a consequence of the definition of in-
formation interval. The information interval [X, Y ] in Definition 1.2 is a
“closed” interval in that the information interval contains the two end points
X and Y . Then, when I ∈ I, [I, I] is an information interval and thus is
a neighborhood of I. The fact that [I, I] only contains I results in that Tn

needs to be eventually identical to I for the information net {Tn, n ∈ D,≥}
to converge to I.

In this paper, we introduce a different type of information intervals, open
information intervals. Based on open information intervals, we introduce
open neighborhoods of a piece of information, and based on open neighbor-
hoods, we introduce a new type of convergence of information nets, open
convergence. The open convergence avoids the undesirable property dis-
cussed above. However, we also point out the limitation of open conver-
gence comparing with the closed convergence introduced in [1] and revisited
in Definition 1.7: In [1], the Moore-Smith style convergence theory for closed
convergence was established for general case of informalogical spaces, but for
open convergence, a same convergence theory cannot be established for gen-
eral case of informalogical spaces. For open convergence, a same convergence
theory can only be established for informalogical spaces that satisfy certain
conditions.

In Section 2, we introduce the concept of an open information interval,
and based on that concept, we introduce the concept of an open neighbor-
hood of a piece of information. Unlike the information intervals introduced
in [1] and revisited in Definition 1.2, the intersection of two open information
intervals is not necessarily an open information interval. We give an infor-
malogical space satisfying the condition that the intersection of two open
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information intervals is still an open information interval a special name:
open normal informalogical space.

In Section 3, we introduce the concept of open convergence of information
nets based on open neighborhoods. Open convergence avoids the undesirable
property of closed convergence shown in Theorem 1.3. However, for open
convergence, we cannot establish a Moore-Smith style convergence theory in
general informalogical spaces as we did for closed convergence in [1]. For
open convergence, we can only establish the Moore-Smith style convergence
theory in open normal informalogical spaces.

In Section 4, we discuss open convergence of information subnets and
information sequences in open normal informalogical spaces.

In Section 5, based on the concept of open interval, we introduce the con-
cept of open interval cover of an information set in an informalogical space,
and based on the concept of open interval cover, we introduce the concept of
an open compact informalogical space. We prove 1) an informalogical space
(S, I) is open compact if and only if each information net in the informa-
logical space has a piece of open cluster information, and 2) if (S, I) further
is an open normal informalogical space, then (S, I) is open compact if and
only if each information net in the informalogical space has a subnet that
open converges.

In Section 6, we discuss various properties of open intervals and open
neighborhoods under isomorphisms introduced in [2]. We also prove that
open limit uniqueness, open normality, open separatedness, open first count-
ability and open compactness are all isomorphic invariants. An isomorphic
invariant is a property of an informalogical space that is preserved under
isomorphisms (see [2]).

In Section 7, we conclude and briefly discuss some of our future work.

2. Open Information Intervals and Open Neighborhoods

In this section, we introduce the concept of an open information interval,
and based on that concept, we introduce the concept of an open neighborhood
of a piece of information. We discuss differences between open information
intervals and the information intervals introduced in [1], or in other words,
closed information intervals. We also introduce a special type of informalogi-
cal spaces, open normal informalogical spaces. In open normal informalogical
spaces, for open convergence (to be introduced in next section), we can es-
tablish a Moore-Smith style convergence theory for information nets.
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Before introducing the concept of an open information interval, we revisit
a concept we introduced in [1], the reference information Ω. For an informa-
logical space (S, I), Ω = ∨S. Also, Ω = ∨I since ∨S = ∨I. (See [1].) We
know that any informalogy I contains at least two members, the zero infor-
mation 0 and the reference information Ω. We call a piece of information in
(S, I) that is neither zero information 0 nor reference information Ω a piece
of proper information in the informalogical space (S, I). Also, if I ≺ J (i.e.,
I ≼ J and I ̸= J), we say that I is a proper subinformation of J .

Definition 2.1. Let (S, I) be an informalogical space. Let X and Y be
two members of the informalogy I. We define (X,Y ) as (X, Y ) ≡ {I|I ∈
S and X ≺ I ≺ Y }. (X, Y ) is an information set which contains all the
information in S that ranges from the lower endpoint X to the upper endpoint
Y and that is not X or Y . We call (X, Y ) a proper open information interval
in the informalogical space (S, I), or simply a proper open interval.

We define [0, Y ) as [0, Y ) ≡ {I|I ∈ S and 0 ≼ I ≺ Y }, and we define
(X,Ω] as (X,Ω] ≡ {I|I ∈ S and X ≺ I ≼ Ω}. We call [0, Y ) a lower special
open information interval in the informalogical space (S, I), or simply a lower
special open interval, and we call (X,Ω] an upper special open information
interval in the informalogical space (S, I), or simply an upper special open
interval.

The aggregation of proper open information intervals and special open
information intervals are called open information intervals, or simply open
intervals. Thus, an open interval can be either a proper open interval or a
special open interval. We can use a single letter, such as U , to represent an
open interval. However, it should be kept in mind that an open interval is an
information set, not a single piece of information.

When both U and V are open intervals (proper open intervals ), and
U ⊆ V , we say that U is an open subinterval (proper open subinterval) of V .

A set of open (proper open) intervals is called a family of open (proper
open) intervals, or an open (proper open) interval family.

The reason why we include special open intervals (i.e., lower and upper
special open intervals) in open intervals in addition to proper open intervals
is that otherwise there would be no open intervals that can contain the two
special (and also trivial) pieces of information 0 and Ω, and consequently,
0 and Ω would not be able to have open neighborhoods (to be introduced
later). Then, it would be theoretically impossible for any information net to
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converge to either 0 or Ω. That would look conceptually bad even though
it may not materially bad. The inclusion of special open intervals at least
avoids that conceptual drawback. However, since proper open intervals are
the natural and important open intervals, when we later introduce concepts
and establish theorems based on open intervals, we also introduce parallel
concepts and establish parallel theorems based on proper open intervals.

With the above definition of open information interval introduced, we can
call the intervals introduced in [1] (see Definition 1.2 above) closed informa-
tion intervals.

There are some differences between closed information intervals and open
information intervals. One difference is: the expression of a closed interval
is unique in that if [X1, Y1] and [X2, Y2] are two non-empty closed intervals,
then, [X1, Y1] = [X2, Y2] if and only if X1 = X2 and Y1 = Y2 (see Lemma
3.1 of [1]), but on the other hand, the expression of an open interval is not
generally unique.

A more material difference between closed information intervals and open
information intervals is: if [X1, Y1] and [X2, Y2] are two closed intervals, then,
as two information sets, their intersection set [X1, Y1]∩[X2, Y2] is also a closed
interval (See Theorem 3.1 of [1]), but on the other hand, the intersection of
two open intervals is not generally an open interval.

The following example exhibits the two characteristics of open informa-
tion intervals: the expression of an open interval is not generally unique; and
the intersection of two open intervals is not generally an open interval.

Assume a, b, c, d, e are independent pieces of information. For examples,
a = “In 2011, New York City had a population of app proximately

8,244,910 people”;
b = “Texas has 254 counties”;
c = “Louisiana has a humid subtropical climate”;
d = “John is 38 years old”; and
e = “Michael is a computational scientist”.
We use these five independent pieces of information as building blocks to

construct an informalogical space (S, I). We explain some notations first.
We use < a, b, c > to represent the union of a, b and c. That is, < a, b, c >
= a ∨ b ∨ c. For the examples of a, b, c mentioned above, < a, b, c > = “In
2011, New York City had a population of approximately 8,244,910 people;
Texas has 254 counties; and Louisiana has a humid subtropical climate.” We
use dORe to represent “Either d or e”, which is also d ∧ e, the intersection
of d and e. For the examples of d, e mentioned above, dORe = “Either John
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is 38 years old or Michael is a computational scientist.”
With the above notations explained we can construct pieces of informa-

tion that constitute the informalogical space (S, I):
X1 = < a >.
X2 = < b >.
W = < a, b >.
I = < a, b, c >.
J = < a, b, d >.
K = < a, b, e >.
Z = < a, b, c, dORe >.
Y1 = < a, b, c, d >.
Y2 = < a, b, c, e >.
Note that the right side actually shows a decomposition. For an example,

{a, b, c} is a decomposition of I. (See [2] for definition of decomposition.)
It is easy to see that W = X1 ∨X2 and Z = Y1 ∧ Y2. Also, we have
X1 ≺ W , X2 ≺ W ,
W ≺ I, W ≺ J , W ≺ K,
I ≺ Z,
J ≺ Y1, Z ≺ Y1,
K ≺ Y2, Z ≺ Y2.
Let
S = {0, X1, X2,W, I, J,K, Z, Y1, Y2,Ω} and
I = {0, X1, X2,W,Z, Y1, Y2,Ω}
Then, (S, I) is an informalogical space. In this informalogical space,
(X1, Y1) = {W, I, J, Z}, and
(X2, Y1) = {W, I, J, Z}.
(X1, Y1) = (X2, Y1) but X1 ̸= X2. Similarly,
(X1, Y2) = {W, I,K, Z}, and
(X2, Y2) = {W, I,K, Z}.
(X1, Y2) = (X2, Y2) but X1 ̸= X2. This shows that the expression of an

open interval is not generally unique.
In this informalogical space,
(X1, Y1) = {W, I, J, Z},
(X2, Y2) = {W, I,K, Z}, and
(X1, Y1) ∩ (X2, Y2) = {W, I, Z}.
Obviously {W, I, Z} cannot be a special open interval since it contains

neither 0 nor Ω. With respect to the possibility of {W, I, Z} being a proper
open interval, since W,Z ∈ {W, I, Z}, none of the end points of the proper
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open interval can be either W or Z. Then, the only proper open intervals
left are (X1, Y1), (X1, Y2), (X2, Y1) and (X2, Y2). It is clear that none of
those four proper open intervals equal to {W, I, Z}. Thus, the intersection
(X1, Y1)∩ (X2, Y2) of (X1, Y1) and (X2, Y2) cannot be an open interval. This
shows that the intersection of two open intervals is not generally an open
interval.

In the above example to show that the expression of an open interval
is not generally unique, the two expressions of a same open interval has
one common endpoint and one different endpoint. Actually, it is easy to
modify the above example so that both endpoints of two expressions of a
same interval are different. The modifications are taking out I, J,K, making
W = Z and making some other minor changes:

X1 = < a, dORe >.
X2 = < b, dORe >.
W = < a, b, dORe >.
Y1 = < a, b, d >.
Y2 = < a, b, e >.
Then, it is easy to see that W = X1 ∨X2 = Y1 ∧ Y2. Let
I = S = {0, X1, X2,W, Y1, Y2,Ω}.
Then, (S, I) is an informalogical space. In this informalogical space,
(X1, Y1) = (X2, Y2) = {W}, but X1 ̸= X2 and Y1 ̸= Y2.
As mentioned earlier, we sometimes simply use a single letter, such as U

to denote an open interval. Since open intervals are information sets, the
statements in the following lemma are inherited directly from set theory.

Lemma 2.1. Suppose U , U1, U2 and U3 are open information intervals.
Then

1. U ⊆ U ;

2. If U1 ⊆ U2 and U2 ⊆ U1, then U1 = U2;

3. If U1 ⊆ U2 and U2 ⊆ U3, then U1 ⊆ U3;

4. U1 ∩ U2 ⊆ U1 and U1 ∩ U2 ⊆ U2; and

5. If I is a piece of information, I ∈ U1 and U1 ⊆ U2, then I ∈ U2.

In establishing the convergence theory for information nets based on
closed intervals in [1], the property that the intersection of two closed in-
tervals is still a closed interval played an important role in proofs of various
theorems. On the other hand, the fact that the intersection of two open in-
tervals generally is not an open interval has profound consequences: Because
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of this fact, for convergence of information nets based on open intervals, we
cannot generally establish the Moore-Smith style convergence theory in [1]
that was based on closed intervals. For convergence of information nets based
on open intervals, we can only establish the Moore-Smith style convergence
theory in informalogical spaces that satisfy the condition that the intersec-
tion of two open intervals is still an open interval. Due to the importance of
this condition, we give a special name to informalogical spaces that satisfy
the condition.

Definition 2.2. Let (S, I) be an informalogical space. We say that (S, I) is
an open (proper open) normal informalogical space if the intersection of any
two open (proper open) intervals is still an open (proper open) interval.

The expression “... open (proper open) ...” in the above definition means
that we can replace “open” by “proper open” to get a parallel definition for
the proper open case. We use this type of expressions in various definitions
and theorems hereafter. All of the expressions carry similar meanings and we
do not explain in each occasion. As mentioned earlier, proper open case is
the natural and important thing in the open case. Thus, when we introduce
concepts and establish theorems for the open case, we also introduce parallel
and independent concepts and establish parallel and independent theorems
for the proper open case. The use of the expression “... open (proper open)
...” in definitions and theorems can establish parallel and independent def-
initions and theorems for both the open and the proper open case, and at
the same time, the use of the expression makes the definitions and theo-
rems concise. As mentioned above, we do not explain the use of this type of
expressions in each occasion.

By repeatedly applying the property that the intersection of any two open
intervals is still an open interval, it is easy to see that the intersection of any
finite number of open intervals is still an open interval in an open normal
informalogical space. The situation is the same for a proper open normal
informalogical space.

Below we introduce a special type of informalogies, linear informalogies,
and prove that informalogical spaces with linear informalogies are open nor-
mal informalogical spaces. Before doing that, we introduce a concept that is
used in the next definition: we say that two pieces of information I and J
are comparable if either I ≼ J or J ≼ I.
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Definition 2.3. Let (S, I) be an informalogical space. We say that the in-
formalogy I is a linear informalogy if any two pieces of information in I are
comparable.

Theorem 2.1. Let (S, I) be an informalogical space. If I is a linear infor-
malogy, then (S, I) is an open (proper open) normal informalogical space.

Proof. We only show proof of the open case. Proof of the proper open case
is similar.

First, we show that the intersection of two proper open intervals is still
a proper open interval. Suppose (X1, Y1) and (X2, Y2) are two proper open
intervals in (S, I). When (X1, Y1) ∩ (X2, Y2) is empty, it is obvious it can
be a proper open interval since we can have (X1, Y1) ∩ (X2, Y2) = (X1, X1).
When (X1, Y1) ∩ (X2, Y2) is non-empty, we show that (X1, Y1) ∩ (X2, Y2) =
(X1 ∨X2, Y1 ∧ Y2).

Since I is a linear informalogy, either X1 ≼ X2 or X2 ≼ X1. Without
loss of generality, assume X1 ≼ X2. Similarly, assume Y1 ≼ Y2. Then,
X1 ∨X2 = X2 and Y1 ∧ Y2 = Y1. Therefore, (X1 ∨X2, Y1 ∧ Y2) = (X2, Y1).

When I ∈ (X1, Y1) ∩ (X2, Y2), we have I ∈ (X1, Y1) and I ∈ (X2, Y2).
Thus, X1 ≺ I ≺ Y1 and X2 ≺ I ≺ Y2. Consequently, X2 ≺ I ≺ Y1 which
means I ∈ (X2, Y1). Thus, (X1, Y1) ∩ (X2, Y2) ⊆ (X2, Y1).

On the other hand, when I ∈ (X2, Y1), we have X2 ≺ I ≺ Y1. Since
X1 ≼ X2, X1 ≺ I, and since Y1 ≼ Y2, I ≺ Y2. Thus, we have X1 ≺ I ≺ Y1

and X2 ≺ I ≺ Y2, which means I ∈ (X1, Y1) and I ∈ (X2, Y2). Consequently,
I ∈ (X1, Y1) ∩ (X2, Y2). Thus, (X2, Y1) ⊆ (X1, Y1) ∩ (X2, Y2).

Now, we know (X1, Y1)∩ (X2, Y2) = (X2, Y1) which means that (X1, Y1)∩
(X2, Y2) is a proper open interval.

Next, we show that the intersection of two lower special open intervals or
two upper special open intervals is still a special open interval. Suppose [0, Y1)
and [0, Y2) are two lower special open intervals in (S, I). When [0, Y1)∩[0, Y2)
is empty, it is obvious it can be a lower special open interval since we can
have [0, Y1)∩[0, Y2) = [0, 0). When [0, Y1)∩[0, Y2) is non-empty, we show that
[0, Y1) ∩ [0, Y2) = [0, Y1 ∧ Y2). Since I is a linear informalogy, without loss
of generality, assume Y1 ≼ Y2. Thus, Y1 ∧ Y2 = Y1. Therefore, [0, Y1 ∧ Y2) =
[0, Y1).

It is obvious [0, Y1)∩[0, Y2) ⊆ [0, Y1). On the other hand, when I ∈ [0, Y1),
we have I ≺ Y1. Since Y1 ≼ Y2, I ≺ Y2. Thus, I ∈ [0, Y2). (Note that 0 ≼ I is
true for any piece of information I.) Consequently, [0, Y1) ⊆ [0, Y1) ∩ [0, Y2).
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Now, we know [0, Y1) ∩ [0, Y2) = [0, Y1) which means that [0, Y1) ∩ [0, Y2) is
still a lower special open interval. Similarly, the intersection of two upper
special open intervals is still an upper special open interval.

Now consider the intersection of a lower special open interval [0, Y ) and an
upper special open interval (X,Ω]. We show [0, Y )∩(X,Ω] = (0, Y )∩(X,Ω).
It is obvious that (0, Y ) ∩ (X,Ω) ⊆ [0, Y ) ∩ (X,Ω]. On the other hand, let
I ∈ [0, Y ) ∩ (X,Ω]. Since 0 ≼ X ≺ I, 0 ≺ I. Since I ≺ Y ≼ Ω, I ≺ Ω.
(Note, that I ≼ Ω is true for any piece of information I in the informalogical
space (S, I).) These mean that I ∈ (0, Y ) and I ∈ (X,Ω). Consequently,
[0, Y ) ∩ (X,Ω] ⊆ (0, Y ) ∩ (X,Ω). Thus, we have [0, Y ) ∩ (X,Ω] = (0, Y ) ∩
(X,Ω) is a proper open interval.

Finally, we show that the intersection of a special open interval and a
proper open interval is still a proper open interval. Let [0, Y1) be a lower
special open interval, and let (X2, Y2) be a proper open interval. We show
[0, Y1) ∩ (X2, Y2) = (0, Y1) ∩ (X2, Y2). It is obvious that (0, Y1) ∩ (X2, Y2) ⊆
[0, Y1) ∩ (X2, Y2). On the other hand, let I ∈ [0, Y1) ∩ (X2, Y2). Since 0 ≼
X2 ≺ I, 0 ≺ I. Thus, I ∈ (0, Y1), and consequently, [0, Y1) ∩ (X2, Y2) ⊆
(0, Y1)∩ (X2, Y2). Thus, [0, Y1)∩ (X2, Y2) = (0, Y1)∩ (X2, Y2) is a proper open
interval. Similarly, the intersection of an upper special open interval and a
proper open interval is still a proper open interval.

This theorem is proved by combining all the facts above. �

After introducing the concept of open intervals, we can introduce the
concept of an open neighborhood.

Definition 2.4. Let (S, I) be an informalogical space, and let I be a piece
of information (proper information) in the informalogical space. Let U be
a non-empty open (proper open) interval in the informalogical space. When
I ∈ U , we say that U is an I-open (I-proper open) neighborhood, or open
(proper open) neighborhood for short, of I. We can use U(I) or simply U to
denote an open (proper open) neighborhood if no confusion seems possible.

It is obvious that an open neighborhood of the two special pieces of in-
formation 0 and Ω must be a special open interval. More accurately, an
open neighborhood of 0 must be a lower special open interval and an open
neighborhood of Ω must be an upper special open interval. In fact, the very
reason that we include special open intervals in the class of open intervals is
that each piece of information in an informalogical space, including 0 and Ω,
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can have an open neighborhood. The proper open interval (0,Ω) is a proper
open neighborhood of any piece of proper information in an informalogical
space.

After open neighborhood is introduced, the neighborhood introduced in
[1] (see Definition 1.3 above) can be called closed neighborhood. In both Defi-
nition 1.3 and Definition 2.4 we say we can use U(I) or U to represent a closed
neighborhood and an open neighborhood. In actual usages, usually context
is clear enough to tell whether the symbol represents a closed neighborhood
or an open neighborhood. When confusions seem possible, we can clarify
or simply use complete symbols, such as U(I)[X, Y ] for a closed neighbor-
hood and U(I)(X, Y ) for an open neighborhood. The situation is similar in
other occasions where we use same notations to represent both the closed
version and the open version of a concept, and we do not explain this in each
occasion.

Definition 2.5. We say that the family of all open (proper open) neighbor-
hoods of a piece of information (proper information) I is the open (proper
open) neighborhood system of I. When no confusion seems possible, we often
use UI to denote the open (proper open) neighborhood system of I.

If U0 ⊆ UI , and every open (proper open) neighborhood of I contains a
member of U0 as an open (proper open) subinterval, we say that U0 is an
open (proper open) base for the open (proper open) neighborhood system of
I, or an open (proper open) local base at I.

With the open neighborhood system and open local base introduced, the
corresponding concepts of neighborhood system and local base we introduced
in [1] can be called closed neighborhood system and closed local base.

Since the intersection of any finite number of open intervals is still an
open interval in an open normal informalogical space, the following theorem
is obvious.

Theorem 2.2. In an open (proper open) normal informalogical space, the
intersection of any finite number of open (proper open) neighborhoods of a
piece of information (proper information) is still an open (proper open) neigh-
borhood of that piece of information.

Next, we prove another theorem about open neighborhood system in an
open normal informalogical space.
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Theorem 2.3. Suppose (S, I) is an open (proper open) normal informalog-
ical space. Let I be a piece of information (proper information) in the space,
and let UI be its open (proper open) neighborhood system. Then, (UI ,⊆) is
a directed set, where ⊆ is the usual subset relation.

Proof. We only show proof of the open case. Proof of the proper open case
is similar.

Suppose (S, I) is an open normal informalogical space, and I is a piece
of information in the space. When I is a piece of proper information (i.e.,
I ̸= 0 and I ̸= Ω, (0,Ω) is an open neighborhood of I. When either I = 0 or
I = Ω, either [0,Ω) or (0,Ω] is a neighborhood of I, respectively. Thus, UI

is non-empty.
Suppose U1, U2, U3 ∈ UI are such that U1 ⊆ U2 and U2 ⊆ U3. Then, by

Lemma 2.1, U1 ⊆ U3. For U ∈ UI , also by Lemma 2.1, U ⊆ U . Suppose
that U1 and U2 are two members of UI , which means that U1 and U2 are
two open neighborhoods of I. Let V = U1 ∩ U2. Since (S, I) is an open
normal informalogical space, by Theorem 2.2, V is a member of UI , and by
Lemma 2.1, V ⊆ U1 and V ⊆ U2. This means (UI ,⊆) is a directed set �

For later discussions of open convergence of information nets, we also
need the concept of product directed set of two directed sets. The following
notions and Lemma 2.2 concerning product directed sets all come from [3,
Chapter 2].

Suppose (D1,≥1) and (D2,≥2) are two directed sets, and let D = D1×D2

be the Cartesian product of D1 and D2. We can construct a binary relation
≥ on D as follows: For (m1, n1) ∈ D and (m2, n2) ∈ D, (m1, n1) ≥ (m2, n2)
if and only if m1 ≥1 m2 and n1 ≥2 n2. Here, m1,m2 ∈ D1 and n1, n2 ∈ D2.
The relation ≥ is called the product order of ≥1 and ≥2, and in this paper,
the product order ≥ is also called the product relation to indicate the fact
that it is a “product” of two binary relations.

Lemma 2.2. ([3, Chapter 2]) The product relation ≥ directs the Cartesian
product D = D1 ×D2, so (D1 ×D2,≥) is a directed set.

(D1 ×D2,≥) is called the product directed set of (D1,≥1) and (D2,≥2).
Using open neighborhoods, we can introduce the concept of open accu-

mulation information.
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Definition 2.6. Let A be an information set in an informalogical space
(S, I) (i.e., A ⊆ S). Let I be a piece of information (proper information)
in the informalogical space (i.e., I ∈ S). We say that I is a piece of I-open
(I-proper open) accumulation information, or a piece of open (proper open)
accumulation information for short, of the information set A if every open
(proper open) neighborhood of I contains a member of A that is different
from I itself.

With the open accumulation information introduced, the corresponding
accumulation information we introduced in [1] can also be called closed ac-
cumulation information.

3. Open Convergence of Information Nets

In [1], we introduced the concept of convergence of information nets based
on closed neighborhoods. That convergence can be called closed convergence.
We built a convergence theory that is similar to the Moore-Smith conver-
gence theory in general topology in that, for all major results of Moore-Smith
convergence theory (see [3, Chapter 2]), we obtained similar results for the
closed convergence of information nets in an informalogical space. However,
as shown in Theorem 1.3 of Section 1, the closed convergence has an unde-
sirable property: in an informalogical space (S, I), if I is in the informalogy
(i.e., I ∈ I), then the necessary condition for an information net to converge
to I is that the information net needs to be eventually identical to I.

In this section, we introduce the concept of open convergence of informa-
tion nets based on open neighborhoods. Open convergence avoids the above
undesirable property of closed convergence. However, for open convergence,
we cannot establish the Moore-Smith style convergence theory for general
informalogical spaces as we did for closed convergence. For open conver-
gence, we can only establish the Moore-Smith style convergence theory in
open normal informalogical spaces.

Definition 3.1. Let {Tn, n ∈ D,≥} be an information net, and let A be an
information set in an informalogical space (S, I). Then

1. we say that the information net {Tn, n ∈ D,≥} is in the information
set A if Tn ∈ A for every n ∈ D;

2. we say that the information net {Tn, n ∈ D,≥} is eventually in the
information set A if there is an m ∈ D such that Tn ∈ A for every
n ∈ D that satisfies n ≥ m; and
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3. we say that the information net {Tn, n ∈ D,≥} is frequently in the
information set A if, for every m ∈ D, there is n ∈ D such that n ≥ m
and Tn ∈ A.

Definition 3.2. Let (S, I) be an informalogical space, {Tn, n ∈ D,≥} be
an information net in the space, and I be a piece of information (proper
information) in the space. We say that the information net {Tn, n ∈ D,≥}
open (proper open) converges to I in the informalogical space (S, I), or say
that {Tn, n ∈ D,≥} I-open (I-proper open) converges to I, if the information
net {Tn, n ∈ D,≥} is eventually in every open (proper open) neighborhood
of I. The information I is called a piece of I-open (I-proper open) limit
information of the information net {Tn, n ∈ D,≥} if {Tn, n ∈ D,≥} I-open
(I-proper open) converges to I. When no confusion would arise, for short,
we simply say that the information net {Tn, n ∈ D,≥} open (proper open)
converges to information I, and that the information I is a piece of open
(proper open) limit information of the information net {Tn, n ∈ D,≥}.

It is worthy to point out that an information net may open converge to
more than one piece of limit information: Let S be a non-empty information
set that contains 0 and Ω = ∨S. Let I = {0,Ω} be the trivial informalogy
(see [1]) for the space S. Then, in this informalogical space (S, I), there are
only three open intervals: (0,Ω), [0,Ω), and (0,Ω], where (0,Ω) is a proper
open interval, [0,Ω) is a lower special open interval and (0,Ω] is an upper
special open interval. Let {Tn, n ∈ D,≥} be a proper information net in
(S, I) which means that each Tn (n ∈ D) is a piece of proper information in S.
Then, it is easy to know that the information net open converges to any piece
of information in the space S. This simple example shows that, generally,
there is no uniqueness of open (proper open) limit information. However,
in an open separated informalogical space to be introduced below, and only
in an open separated informalogical space, the open limit information of an
information net, if such a limit exists, is unique.

Definition 3.3. Let (S, I) be an informalogical space. We say that (S, I)
is an open (proper open) separated informalogical space, or say that it is
open (proper open) separated, if for every two distinct pieces of information
(proper information) I and J in the space, i.e., I, J ∈ S and I ̸= J , there
exist open (proper open) neighborhoods U and V of I and J , respectively,
such that U ∩ V = ϕ.
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Once open separated informalogical space is introduced, the “separated
informalogical space” introduced in [1] can be called closed separated infor-
malogical space.

Lemma 3.1. Let U and V be two open (proper open) information intervals.
Then, U ∩ V ̸= ϕ if and only if there is a piece of information (proper
information) I ∈ S such that I ∈ U and I ∈ V .

This lemma is obvious.

Theorem 3.1. Suppose informalogical space (S, I) is an open (proper open)
normal informalogical space. Then, (S, I) is open (proper open) separated if
and only if every information net in the space has at most one piece of open
(proper open) limit information.

Proof. We only show proof of the open case. Proof of the proper open case
is similar.

Assume (S, I) is open separated. Suppose I, J ∈ S and I ̸= J . Then,
there are open neighborhoods U and V of I and J , respectively, such that
U ∩V = ϕ. By Lemma 3.1, an information net cannot be eventually in both
U and V . Thus, an information net cannot open converge to both I and J .

To establish the converse, assume (S, I) is not open separated. We con-
struct an information net that converges to two distinct pieces of information.
Since (S, I) is not open separated, there exist two distinct pieces of informa-
tion I and J in the space such that every open neighborhood U of I intersects
every open neighborhood V of J . By Lemma 3.1, we can select a piece of
information T(U,V ) ∈ S such that T(U,V ) ∈ U and T(U,V ) ∈ V . Let UI be the
open neighborhood system of I, and UJ be the open neighborhood system of
J . Since (S, I) is open normal, by Theorem 2.3, (UI ,⊆) and (UJ ,⊆) are two
directed sets. By Lemma 2.2, we can denote (UI × UJ ,≥) as their product
directed set. Then, {T(U,V ), (U, V ) ∈ UI ×UJ ,≥} is an information net in the
space. Next, we show that the information net {T(U,V ), (U, V ) ∈ UI ×UJ ,≥}
open converges to both I and J .

In fact, for every open neighborhood U of I and every open neighborhood
V of J , we have (U, V ) ∈ UI ×UJ . For every (U ′, V ′) ∈ UI ×UJ that satisfies
(U ′, V ′) ≥ (U, V ), we have U ′ ⊆ U and V ′ ⊆ V . We know T(U ′,V ′) ∈ U ′ and
T(U ′,V ′) ∈ V ′ from the selection of T(U ′,V ′). Thus, T(U ′,V ′) ∈ U and T(U ′,V ′) ∈
V . This means that the information net {T(U,V ), (U, V ) ∈ UI × UJ ,≥} is
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eventually in every open neighborhood U of I and every open neighborhood
V of J . Consequently, the information net open converges to both I and J .

�
Next theorem establishes the relationship between a piece of open ac-

cumulation information of an information set and open convergence of an
information net in an open normal informalogical space.

Theorem 3.2. Suppose informalogical space (S, I) is an open (proper open)
normal informalogical space. Then, a piece of information (proper informa-
tion) I is a piece of open (proper open) accumulation information of an
information set A if and only if there exists an information net in A \ {I}
that open (proper open) converges to I.

Proof. We only show proof of the open case. Proof of the proper open case
is similar.

Assume I is a piece of open accumulation information of A. Let UI be
the open neighborhood system of I. Then, for every U ∈ UI , U contains a
member of A other than I itself. We denote this member of A as TU . Then,
it is clear that TU ∈ A \ {I} and TU ∈ U . Since (S, I) is open normal,
by Theorem 2.3, (UI ,⊆) is a directed set. Thus, {TU , U ∈ UI ,⊆} is an
information net in A \ {I}.

For every open neighborhood U of I, namely U ∈ UI , when V ∈ UI

that satisfies V ⊆ U , we have TV ∈ U since TV ∈ V and V ⊆ U . This
means that the information net {TU , U ∈ UI ,⊆} is eventually in every open
neighborhood U of I, and consequently, this information net open converges
to I.

To establish the converse, assume that there exists an information net
{Tn, n ∈ D,≥} in A \ {I} that open converges to I. Then, for every open
neighborhood U of I, there is p ∈ D such that Tn ∈ U for every n ∈ D
that satisfies n ≥ p. Since, by the definition of a directed set, p ≥ p, we
have Tp ∈ U . We know that Tp ∈ A \ {I}. Thus, Tp ̸= I. This means that
every open neighborhood of I contains a member of A other than I itself,
and consequently, I is a piece of open accumulation information of A. �

4. Open Convergence of Information Subnets and Information Se-
quences

We introduced the concepts of information subnet and information se-
quence in [1] and discussed closed convergence of information subnets and
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information sequences. In this section we first review the concepts of infor-
mation subnet and information sequence, and then prove that the theorems
in [1] related to information subnets and information sequences hold for open
convergence in open normal informalogical spaces.

Definition 4.1. ([1]) Let {Tn, n ∈ D,≥} and {Rm,m ∈ E,≥1} be two in-
formation nets. We say that {Tn, n ∈ D,≥} is an information subnet, or
subnet for short, of {Rm,m ∈ E,≥1} if there exists a function N on D with
values in E such that

1. T = R • N , or equivalently, Tn = RNn for each n ∈ D, where “•” is
function composition; and

2. for each m ∈ E, there is a p ∈ D such that if n ≥ p, then, Nn ≥1 m.

Definition 4.2. ([1]) We say that an information net {Tn, n ∈ D,≥} is an
information sequence if there is a bijective map between D and the set of
positive integers {1, 2, 3, ...} that preserves the order. That is, suppose f is
the bijective map from D to {1, 2, 3, ...}, then, by “preserves the order” we
mean that, for any n1, n2 ∈ D, n1 ≥ n2 in D if and only if f(n1) ≥ f(n2) in
{1, 2, 3, ...}.

Definition 4.3. ([1]) Let {Tn} and {Rm} be two information sequences. We
say that {Tn} is an information subsequence, or subsequence for short, of
{Rm}, if, viewed as two information nets, {Tn} is a subnet of {Rm}.

Without loss of generality, we can write an information sequence as
{T1, T2, ..., Tn, ...}. For simplicity, we often simply write {T1, T2, ..., Tn, ...}
as {Tn}. If {Tn} is an information subsequence of {Rm}, then there is a
function N on the positive integers and values in the positive integers such
that Ti = RNi

for i = 1, 2, ..., n, ..., and for each positive integer m, there is
a positive integer n such that if i ≥ n, then Ni ≥ m.

In [1], we introduced the concepts of cluster information of an information
net and first countable informalogical space based on closed neighborhoods.
Now, we introduce open version of those two concepts based on open neigh-
borhoods.

Definition 4.4. We say that a piece of information (proper information) I
is a piece of open (proper open) cluster information of an information net
{Tn, n ∈ D,≥} if the information net {Tn, n ∈ D,≥} is frequently in every
open (proper open) neighborhood of I.
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Definition 4.5. Let (S, I) be an informalogical space. We say that the in-
formalogical space is open (proper open) first countable if the open (proper
open) neighborhood family of each piece of information (proper information)
in the space has a countable open (proper open) base. In other words, there is
a countable open (proper open) local base at each piece of information (proper
information) in the space.

With the preparation completed we prove that the theorems in [1] related
to information subnets and information sequences hold for open convergence
in open normal informalogical spaces.

Lemma 4.1. Let (S, I) be an open (proper open) normal informalogical
space. Suppose that {Rm,m ∈ E,≥1} is an information net in the space,
I is a piece of information (proper information) in the space, and UI is
the open (proper open) neighborhood system of I. If the information net is
frequently in every member of UI , then, there is an information subnet of
{Rm,m ∈ E,≥1} that open (proper open) converges to I.

Proof. We only show proof of the open case. Proof of the proper open case
is similar.

Let U ∈ UI . Since {Rm,m ∈ E,≥1} is frequently in U , for each m0 ∈ E
there is m ∈ E such that m ≥1 m0 and Rm ∈ U . Let D = {(m,U)|m ∈
E,U ∈ UI and Rm ∈ U}. We define a binary relation ≥ on D as follows:
(m2, U2) ≥ (m1, U1) if and only if m2 ≥1 m1 and U2 ⊆ U1.

First, we show that (D,≥) is a directed set. It is obvious that D is
non-empty. If (m3, U3) ≥ (m2, U2) and (m2, U2) ≥ (m1, U1) then, we have
m3 ≥1 m2 and m2 ≥1 m1, and U3 ⊆ U2 and U2 ⊆ U1. These imply m3 ≥1 m1

and U3 ⊆ U1. Thus, (m3, U3) ≥ (m1, U1). It is clear that (m,U) ≥ (m,U),
since m ≥1 m and U ⊆ U . For any two members (m1, U1) and (m2, U2)
of D, there is an n

′ ∈ E such that n
′ ≥1 m1 and n

′ ≥1 m2 since (E,≥1)
is a directed set. Let V = U1 ∩ U2. Then V ⊆ U1 and V ⊆ U2. Since
(S, I) is an open normal informalogical space, by Theorem 2.2, V ∈ UI . For
V ∈ UI and n

′ ∈ E, since {Rm,m ∈ E,≥1} is frequently in V , there is an
n ∈ E such that n ≥1 n

′
and Rn ∈ V . Then, we know 1) (n, V ) ∈ D; 2)

(n, V ) ≥ (m1, U1) since n ≥1 n
′ ≥1 m1 and V ⊆ U1; and 3) (n, V ) ≥ (m2, U2)

since n ≥1 n
′ ≥1 m2 and V ⊆ U2. Now we know that (D,≥) is a directed

set.
Second, we construct a subnet of {Rm,m ∈ E,≥1} as follows: For each

(m,U) ∈ D, let N(m,U) = m and T(m,U) = Rm. Then, T = R • N , where
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“•” is function composition. We construct an open neighborhood U0 of I
as follows: if I is a piece of proper information, then U0 ≡ (0,Ω); and if
I = 0 or Ω, then U0 ≡ [0,Ω) or U0 ≡ (0,Ω], respectively. Then, for each
n ∈ E and the open neighborhood U0 of I, there is p ∈ E such that p ≥1 n
and Rp ∈ U0, since the information net {Rm,m ∈ E,≥1} is frequently in U0.
Then, (p, U0) ∈ D. For any (m,U) ∈ D that satisfies (m,U) ≥ (p, U0), we
have N(m,U) = m ≥1 p ≥1 n. This shows that {T(m,U), (m,U) ∈ D,≥} is a
subnet of {Rm,m ∈ E,≥1}.

Finally, we show that the information net {T(m,U), (m,U) ∈ D,≥} open
converges to I. For every open neighborhood V ∈ UI , since {Rm,m ∈
E,≥1} is frequently in V , there is a p ∈ E such that Rp ∈ V . Thus,
(p, V ) ∈ D. If (m,U) ∈ D and (m,U) ≥ (p, V ), then T(m,U) = Rm ∈
U ⊆ V , and consequently, T(m,U) ∈ V . This means that the information net
{T(m,U), (m,U) ∈ D,≥} is eventually in every open neighborhood V of I.
Thus, the information net {T(m,U), (m,U) ∈ D,≥} open converges to I. �

Theorem 4.1. Let (S, I) be an open (proper open) normal informalogical
space. Then, a piece of information (proper information) I is a piece of open
(proper open) cluster information of an information net {Rm,m ∈ E,≥1} if
and only if the information net has a subnet that open (proper open) converges
to I.

Proof. We only show proof of the open case. Proof of the proper open case
is similar.

Suppose that I is a piece of open cluster information of {Rm,m ∈ E,≥1}.
Then, {Rm,m ∈ E,≥1} is frequently in every open neighborhood of I. Since
(S, I) is open normal, by Lemma 4.1, the information net has a subnet that
open converges to I.

To establish the converse, suppose that {Rm,m ∈ E,≥1} has a subnet
{Tn, n ∈ D,≥} that open converges to I. Then, for every open neighborhood
U of I, there is a p1 ∈ D such that if n ∈ D and n ≥ p1, then Tn ∈ U . Since
{Tn, n ∈ D,≥} is a subnet of {Rm,m ∈ E,≥1}, for every m ∈ E, there is a
p2 ∈ D such that if n ∈ D and n ≥ p2, then Nn ≥1 m, where N is a function
on D with values in E and T = R • N , or equivalently, Tn = RNn for each
n ∈ D (see Definition 4.1).

Let us go back to D. Since (D,≥) is a directed set, for p1 ∈ D and
p2 ∈ D, there is a q ∈ D such that q ≥ p1 and q ≥ p2. We have Tq ∈ U since
q ≥ p1, and we have Nq ≥1 m since q ≥ p2. Let m

′
= Nq. Then, we have
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m
′ ∈ E, m

′ ≥1 m and Rm′ = RNq = Tq ∈ U . That means, for every open
neighborhood U of I and everym ∈ E, there is anm

′ ∈ E such thatm
′ ≥1 m

and Rm′ ∈ U . Thus, {Rm,m ∈ E,≥1} is frequently in U . Consequently, I is
a piece of open cluster information of the information net {Rm,m ∈ E,≥1}.

�

Theorem 4.2. Let (S, I) be an open (proper open) normal informalogical
space. Suppose that the informalogical space (S, I) is open (proper open)
first countable, I is a piece of information (proper information) in the space,
A is an information set in the space, and {Rm} is an information sequence
in the space. Then

1. I is a piece of open (proper open) accumulation information of A if and
only if there is an information sequence in A \ {I} that open (proper
open) converges to I; and

2. I is a piece of open (proper open) cluster information of {Rm} if and
only if {Rm} has a subsequence that open (proper open) converges to I.

Proof. We only show proof of the open case. Proof of the proper open case
is similar.

Since (S, I) is open first countable, we can assume that {U1, U2, ..., Un, ...}
is an open local base at I. Then, for n = 1, 2, 3, ..., we define Vn ≡ ∩n

i=1Ui.
Since (S, I) is open normal, by Theorem 2.2, V1, V2, ..., Vn, ... are also open
neighborhoods of I. It is obvious that ... ⊆ Vn+1 ⊆ Vn ⊆ ... ⊆ V2 ⊆ V1. Also,
Vn ⊆ Un for n = 1, 2, 3, .... Thus, {V1, V2, ..., Vn, ...} is also an open local base
at I.

1. Suppose I is a piece of open accumulation information of A. Then, for
each Vn, there is a Tn ∈ A \ {I} such that Tn ∈ Vn, and consequently,
we obtain an information sequence {T1, T2, ..., Tn, ...} in A \ {I}. For
every open neighborhood U of I, since {V1, V2, ..., Vn, ...} is an open
local base at I, there is a Vp such that Vp ⊆ U . Then, when n ≥ p,
we have Tn ∈ Vn ⊆ Vp ⊆ U , and thus Tn ∈ U . This means that
the information sequence {T1, T2, ..., Tn, ...} is eventually in every open
neighborhood of I. Therefore, {T1, T2, ..., Tn, ...} open converges to I.
Since an information sequence is also an information net, the converse
part of the assertion is established by Theorem 3.2.
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2. Suppose I is a piece of open cluster information of the information se-
quence {Rm}. Then, for each Vi, there is a positive integer Ni such that
Ni ≥ i and RNi

∈ Vi. Let Ti = RNi
for i = 1, 2, 3, .... It is clear that

{Tn} is a subsequence of {Rm}. For every open neighborhood U of I,
since {V1, V2, ..., Vn, ...} is an open local base at I, there is a Vp such that
Vp ⊆ U . Then, when n ≥ p, we have Tn = RNn ∈ Vn ⊆ Vp ⊆ U , so Tn ∈
U . This means that the information sequence {T1, T2, ..., Tn, ...} is even-
tually in every open neighborhood of I. Therefore, {T1, T2, ..., Tn, ...}
open converges to I.
Since an information subsequence is also an information subnet, the
converse part of the assertion is established by Theorem 4.1. �

5. Open Compactness

In [2], based on the concept of closed interval, we introduced the concept
of interval cover of an information set in an informalogical space, and based
on the concept of interval cover, we introduced the concept of a compact
informalogical space. In this section, based on the concept of open interval,
we introduce the concept of open interval cover of an information set in an
informalogical space, and based on the concept of open interval cover, we in-
troduce the concept of an open compact informalogical space. Then we show
1) an informalogical space (S, I) is open compact if and only if each informa-
tion net in the informalogical space has a piece of open cluster information,
and 2) if (S, I) further is an open normal informalogical space, then (S, I) is
open compact if and only if each information net in the informalogical space
has a subnet that open converges.

Definition 5.1. Let (S, I) be an informalogical space, let A be a set of in-
formation (proper information) in the informalogical space (i.e., A ⊆ S),
and let U be a family of open (proper open) intervals in the informalogical
space. We say that the open (proper open) interval family U is an open
(proper open) interval cover of the information (proper information) set A
if A ⊆ ∪U , or in other words, each piece of information (proper informa-
tion) in A is in some open (proper open) interval in the open (proper open)
interval family U .

Definition 5.2. We say that an informalogical space (S, I) is an open (proper
open) compact informalogical space, or (S, I) is open (proper open) compact,
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if each open (proper open) interval cover U of S (S \{0,Ω}) has a finite open
(proper open) subcover, or in other words, there are finite members U1, U2,
..., Un of U such that S ⊆ ∪n

i=1Ui ( S \ {0,Ω} ⊆ ∪n
i=1Ui ).

Theorem 5.1. An informalogical space (S, I) is open (proper open) compact
if and only if each information net in the informalogical space has a piece of
open (proper open) cluster information.

Proof. We only show proof of the open case. Proof of the proper open case
is similar.

Suppose that (S, I) is an open compact informalogical space, and suppose
that {Tn, n ∈ D,≥} is an information net in the informalogical space. If the
information net {Tn, n ∈ D,≥} has no open cluster information, then, for
each piece of information I in the space S (i.e., I ∈ S), there is an open
neighborhood UI of I (i.e., UI is an open information interval and I ∈ UI)
and nI ∈ D such that Tn /∈ UI for n ∈ D and n ≥ nI . Let U ≡ {UI |I ∈ S},
then U is an open interval cover of S. Since (S, I) is open compact, U has
a finite open subcover {UI1, UI2, ..., UIr}. Since D is a directed set, there
is n0 ∈ D such that n0 ≥ nIj, j = 1, 2, ..., r. Therefore, Tn0 /∈ UIj, j =
1, 2, ..., r. However, this is contradictory to that {UI1, UI2, ..., UIr} is an open
interval cover of the space S. This proves that if (S, I) is open compact then
each information net in the informalogical space has a piece of open cluster
information.

Conversely, suppose that each information net in (S, I) has a piece of
open cluster information, and suppose that U is an open interval cover of S.
We show that U has a finite subcover. Otherwise, for each finite subfamily
n ≡ {U1, U2, ..., Ur} of U (i.e., Uj ∈ U , j = 1, 2, ..., r), there is Tn ∈ S such
that Tn /∈ Uj, j = 1, 2, ..., r. Let D ≡ {n|n is a finite subfamily of U}. We
show that (D,⊇) is a directed set, where ⊇ is the regular superset relation
between two sets. For n1, n2, n3 ∈ D, if n1 ⊇ n2 and n2 ⊇ n3, then n1 ⊇ n3. A
set n is a superset of itself, meaning n ⊇ n. For any two members n1, n2 ∈ D,
let n = n1∪n2. Then, since n1 and n2 are two finite subfamilies of U , n is also
a finite subfamily of U and thus n ∈ D. It is obvious that n ⊇ n1 and n ⊇ n2.
Now, we know that (D,⊇) is a directed set. Therefore, {Tn, n ∈ D,⊇} is an
information net in the informalogical space (S, I).

Since each information net in (S, I) has a piece of open cluster infor-
mation, let T be a piece of open cluster information of the information net
{Tn, n ∈ D,⊇}. Since U is an open interval cover of S, there is UT ∈ U
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such that T ∈ UT , which means that UT is an open neighborhood of T . Let
n0 ≡ {UT} ∈ D. Then, since T is a piece of open cluster information of
{Tn, n ∈ D,⊇}, there is an n ∈ D such that n ⊇ n0 and Tn is in the open
neighborhood UT of T , or in other words, Tn ∈ UT . However, on the other
hand, n ⊇ n0 means n ⊇ {UT} which implies UT ∈ n. Thus, by the choice
of Tn, Tn is not in any open interval in n, which implies Tn /∈ UT . Now, we
have Tn ∈ UT and Tn /∈ UT at the same time. This contradiction shows that
U must have a finite subcover. �

It should be noted that the above theorem does not require (S, I) to be
an open normal informalogical space. In Section 4, Theorem 4.1 shows that,
in an open normal informalogical space, a piece of information is a piece of
open cluster information of an information net if and only if the information
net has a subnet that open converges to that piece of information. Thus, for
an open normal informalogical space, we have the following corollary.

Corollary 5.1. Let (S, I) be an open (proper open) normal informalogical
space. Then, (S, I) is open (proper open) compact if and only if each infor-
mation net in the informalogical space has a subnet that open (proper open)
converges to a piece of information (proper information) in (S, I).

6. Isomorphic Invariants

In [2], we introduced the concept of isomorphism between two informa-
logical spaces. Basically, an isomorphism between two informalogical spaces
(S1, I1) and (S2, I2) is an order-preserving bijective function f from (S1, I1)
to (S2, I2), and f preserves the informalogy. That is, 1) f is a bijective
function from S1 to S2; 2) f(I) ≼ f(J) in S2 if and only if I ≼ J in S1

(order-preserving); and 3) f(I) ∈ I2 if and only if I ∈ I1. An obvious fact
about isomorphism is that if f is an isomorphism from (S1, I1) to (S2, I2),
then f−1 is an isomorphism from (S2, I2) to (S1, I1). This fact will be used
frequently when we prove various theorems below.

In [2], we also introduced the concept of isomorphic invariant which is a
property of an informalogical space that is preserved under isomorphisms. In
this section, we prove that open limit uniqueness, open normality, open sep-
aratedness, open first countability and open compactness are all isomorphic
invariants.

The following lemma is a property of order-preserving bijective functions.
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Lemma 6.1. Let f be an order-preserving bijective function from (S1, I1) to
(S2, I2). Then, f(I) ≺ f(J) in S2 if and only if I ≺ J in S1.

This lemma is easy to prove: Suppose I ≺ J . Then, f(I) ≼ f(J) since f
is order-preserving. Also, f(I) = f(J) cannot be true since it implies I = J
due to that f is bijective. Thus, f(I) ≺ f(J). Similarly f(I) ≺ f(J) implies
I ≺ J .

Theorem 6.1. Let f be an order-preserving bijective function from (S1, I1)
to (S2, I2). Let A,B ∈ S1. Then,

1. f({I|I ∈ S1 and A ≺ I ≺ B}) = {J |J ∈ S2 and f(A) ≺ J ≺ f(B)};
2. f({I|I ∈ S1 and A ≼ I ≺ B}) = {J |J ∈ S2 and f(A) ≼ J ≺ f(B)};

and

3. f({I|I ∈ S1 and A ≺ I ≼ B}) = {J |J ∈ S2 and f(A) ≺ J ≼ f(B)}.

Proof. 1. Let X ∈ f({I|I ∈ S1 and A ≺ I ≺ B}). Then, there is I ∈ S1

satisfying A ≺ I ≺ B such that f(I) = X. Since f is an order-preserving
bijective function, by Lemma 6.1, f(A) ≺ f(I) ≺ f(B). This means f(A) ≺
X ≺ f(B). Thus, X ∈ {J |J ∈ S2 and f(A) ≺ J ≺ f(B)}. This also
shows that if f({I|I ∈ S1 and A ≺ I ≺ B}) is non-empty then {J |J ∈
S2 and f(A) ≺ J ≺ f(B)} is non-empty.

On the other hand, let X ∈ {J |J ∈ S2 and f(A) ≺ J ≺ f(B)}. Then,
f(A) ≺ X ≺ f(B). Since f is a bijective function, there is I ∈ S1 such
that f(I) = X. Thus, f(A) ≺ f(I) ≺ f(B). Since f is an order-preserving
bijective function, again by Lemma 6.1, A ≺ I ≺ B. That is, X ∈ f({I|I ∈
S1 and A ≺ I ≺ B}). This also shows that if {J |J ∈ S2 and f(A) ≺ J ≺
f(B)} is non-empty then f({I|I ∈ S1 and A ≺ I ≺ B}) is non-empty.

Combination of the above two facts shows 1) if both f({I|I ∈ S1 and A ≺
I ≺ B}) and {J |J ∈ S2 and f(A) ≺ J ≺ f(B)} are non-empty, then
f({I|I ∈ S1 and A ≺ I ≺ B}) = {J |J ∈ S2 and f(A) ≺ J ≺ f(B)};
and 2) if one of f({I|I ∈ S1 and A ≺ I ≺ B}) and {J |J ∈ S2 and f(A) ≺
J ≺ f(B)} is empty so is the other, and thus the equality is still true.

2. and 3. can be proved similarly. �

Theorem 6.2. Let f be an isomorphism from (S1, I1) to (S2, I2), and let
X, Y ∈ I1. Then, f(X), f(Y ) ∈ I2 and

1. f((X,Y )) = (f(X), f(Y ));
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2. f([0, Y )) = [0, f(Y )); and

3. f((X,Ω1]) = (f(X),Ω2], where Ω1 = ∨S1 and Ω2 = ∨S2.

Proof. X, Y ∈ I1 implies f(X), f(Y ) ∈ I2 since f is an isomorphism. Also,
since an isomorphism is an order-preserving bijective function, by Theorem
4.1 of [2], f(0) = 0 and f(Ω1) = Ω2. Then, the three equalities in this
theorem come directly from the three corresponding equalities in Theorem
6.1. �

The above theorem basically shows open intervals are preserved under an
isomorphism. The following theorem shows open neighborhoods of a piece
of information are preserved under an isomorphism.

Theorem 6.3. Let f be an order-preserving bijective function from (S1, I1)
to (S2, I2). Then, the following four statements are equivalent.

1. f is an isomorphism.

2. (f(X), f(Y )) is an open neighborhood of f(I) in (S2, I2) if and only
if (X, Y ) is an open neighborhood of I in (S1, I1); (f(X),Ω2] is an
open neighborhood of f(I) in (S2, I2) if and only if (X,Ω1] is an open
neighborhood of I in (S1, I1); and [0, f(Y )) is an open neighborhood of
f(I) in (S2, I2) if and only if [0, Y ) is an open neighborhood of I in
(S1, I1).

3. (f(X),Ω2] is an open neighborhood of f(I) in (S2, I2) if and only if
(X,Ω1] is an open neighborhood of I in (S1, I1).

4. [0, f(Y )) is an open neighborhood of f(I) in (S2, I2) if and only if [0, Y )
is an open neighborhood of I in (S1, I1).

Proof. We know that f−1 is an isomorphism from (S2, I2) to (S1, I1) if f is
an isomorphism from (S1, I1) to (S2, I2). Also, since f is an order-preserving
bijective function, by Theorem 4.1 of [2], f(0) = 0 and f(Ω1) = Ω2.

Suppose 1. is true, we prove 2.
Assume (X, Y ) is an open neighborhood of I in (S1, I1), then, X,Y ∈

I1 and X ≺ I ≺ Y . Since f is an isomorphism from (S1, I1) to (S2, I2),
f(X), f(Y ) ∈ I2, and by Lemma 6.1, f(X) ≺ f(I) ≺ f(Y ). This means
that (f(X), f(Y )) is an open neighborhood of f(I) in (S2, I2). Conversely,
assume (f(X), f(Y )) is an open neighborhood of f(I) in (S2, I2). Since f−1

is an isomorphism from (S2, I2) to (S1, I1), then by what is just proved,
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(f−1(f(X)), f−1(f(Y ))) = (X, Y ) is an open neighborhood of f−1(f(I)) = I
in (S1, I1).

Noting f(0) = 0 and f(Ω1) = Ω2, we can similarly prove that [0, f(Y ))
is an open neighborhood of f(I) in (S2, I2) if and only if [0, Y ) is an open
neighborhood of I in (S1, I1), and (f(X),Ω2] is an open neighborhood of f(I)
in (S2, I2) if and only if (X,Ω1] is an open neighborhood of I in (S1, I1).

Suppose 2. is true, then it is obvious that 3. and 4. are true.
Suppose 3. is true. We prove 1 is true, which means we prove that f(I) ∈

I2 if and only if I ∈ I1. Assume I ∈ I1. If I = Ω1, then f(I) = Ω2 ∈ I2. If
I ̸= Ω1, then f(I) ̸= Ω2. (I,Ω1] is an open neighborhood of Ω1 in (S1, I1)
since I ̸= Ω1. Then, by 3., (f(I),Ω2] is an open neighborhood of f(Ω1) = Ω2

in (S2, I2), which implies f(I) ∈ I2. Conversely, assume f(I) ∈ I2. If
f(I) = Ω2, then I = Ω1 ∈ I1. If f(I) ̸= Ω2, then I ̸= Ω1. (f(I),Ω2] is an
open neighborhood of Ω2 in (S2, I2) since f(I) ̸= Ω2. Then, by 3., (I,Ω1] is
an open neighborhood of Ω1 in (S1, I1), which implies I ∈ I1.

Suppose 4. is true. We can similarly prove 1 is true just by replacing
Ω1 and Ω2 with 0 and replacing the upper special open intervals with lower
special open intervals in the above proof.

Finally we know the four statements are equivalent by combining all the
facts proved above. �

We can have the following theorem by applying Theorem 6.2 and Theorem
6.3.

Theorem 6.4. Let f be an isomorphism from (S1, I1) to (S2, I2). Then we
have

1. if U is an open (proper open) interval in (S1, I1), then f(U) is an open
(proper open) interval in (S2, I2); and

2. if U is an open (proper open) neighborhood of I in (S1, I1), then f(U)
is an open (proper open) neighborhood of f(I) in (S2, I2).

Let f be a function from (S1, I1) to (S2, I2). Let {Tn, n ∈ D,≥} be an
information net in (S1, I1). Then, {f(Tn), n ∈ D,≥} is an information net
in (S2, I2). The following theorem establishes the relationship between open
convergence of the two information nets in the two informalogical spaces
under an isomorphism.
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Theorem 6.5. Let f be an isomorphism from (S1, I1) to (S2, I2). The in-
formation net {f(Tn), n ∈ D,≥} open (proper open) converges to f(T ) in
(S2, I2) if and only if the information net {Tn, n ∈ D,≥} open (proper open)
converges to T in (S1, I1).

Proof. We only show proof of the open case. Proof of the proper open case
is similar.

Assume that {Tn, n ∈ D,≥} open converges to T in (S1, I1). We consider
{f(Tn), n ∈ D,≥} in (S2, I2). Let V be an open neighborhood of f(T ) in
(S2, I2) and let U = f−1(V ). By Theorem 6.4, U is an open neighborhood
of T in (S1, I1) since f−1 is an isomorphism from (S2, I2) to (S1, I1). Since
{Tn, n ∈ D,≥} open converges to T in (S1, I1), there is p ∈ D such that
Tn ∈ U for n ∈ D satisfying n ≥ p. Tn ∈ U means that U is an open
neighborhood of Tn in (S1, I1). By Theorem 6.4, f(U) = V is an open
neighborhood of f(Tn) in (S2, I2). This means f(Tn) ∈ V for n ∈ D satisfying
n ≥ p. Thus, {f(Tn), n ∈ D,≥} open converges to f(T ) in (S2, I2).

Conversely, assume that the information net {f(Tn), n ∈ D,≥} open
converges to f(T ) in (S2, I2). Then, since f

−1 is an isomorphism from (S2, I2)
to (S1, I1), by what is just proved, the information net {f−1(f(Tn)), n ∈ D,≥
} = {Tn, n ∈ D,≥} open converges to f−1(f(T )) = T in (S1, I1). �

Theorem 6.6. Let f be an isomorphism from (S1, I1) to (S2, I2), let A be
an information set in (S1, I1) and let I be a piece of information (proper
information) in (S1, I1). Then, f(I) is an open (proper open) accumulation
information of the information set f(A) in (S2, I2) if and only if I is an open
(proper open) accumulation information of the information set A in (S1, I1).

Proof. We only show proof of the open case. Proof of the proper open case
is similar.

Since f is an isomorphism from (S1, I1) to (S2, I2), f
−1 is an isomorphism

from (S2, I2) to (S1, I1).
Suppose I is an open accumulation information of the information set

A in (S1, I1). We prove f(I) is an open accumulation information of the
information set f(A) in (S2, I2). Let V be an open neighborhood of f(I) in
(S2, I2). Since f−1 is an isomorphism from (S2, I2) to (S1, I1), by Theorem
6.4, f−1(V ) is an open neighborhood of f−1(f(I)) = I in (S1, I1). Since I is
an open accumulation information of the information set A in (S1, I1), there
is A ∈ A such that A ̸= I and A ∈ f−1(V ). Then, since f is a bijective
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function, f(A) ∈ f(A), f(A) ̸= f(I) and f(A) ∈ f(f−1(V )) = V . This
shows that every open neighborhood of f(I) contains a member of f(A) that
is different from f(I) itself. Thus, f(I) is an open accumulation information
of the information set f(A) in (S2, I2).

Since f−1 is an isomorphism from (S2, I2) to (S1, I1), f
−1(f(I)) = I and

f−1(f(A)) = A, the converse part of this theorem is obtained by what is just
proved. �

Next we present theorems about isomorphic invariants in cases of con-
cepts based on open intervals. An isomorphic invariant is a property of an
informalogical space that is preserved under isomorphisms. (See [2]).

Theorem 6.7. Open (proper open) limit uniqueness is an isomorphic in-
variant.

Proof. We only show proof of the open case. Proof of the proper open case
is similar.

Let (S1, I1) be an informalogical space in which an information net has
at most one piece of open limit information. Let (S1, I1) be isomorphic to
(S2, I2). We prove that an information net in (S2, I2) also has at most one
piece of open limit information.

Suppose f is an isomorphism from (S1, I1) to (S2, I2). Then, f−1 is an
isomorphism from (S2, I2) to (S1, I1). Suppose {Tn, n ∈ D,≥} is an infor-
mation net in (S2, I2). If {Tn, n ∈ D,≥} has two distinct pieces of open
limit information I and J (I ̸= J) in (S2, I2), then, since f−1 is an iso-
morphism from (S2, I2) to (S1, I1), by Theorem 6.5, the information net
{f−1(Tn), n ∈ D,≥} in (S1, I1) has two distinct pieces of open limit infor-
mation f−1(I) and f−1(J) (f−1(I) ̸= f−1(J)) in (S1, I1). However, this
is contradictory to the open limit uniqueness in (S1, I1). This proves that
{Tn, n ∈ D,≥} can only have at most one piece of open limit information.
�

Theorem 6.8. Open (proper open) normality is an isomorphic invariant.

Proof. We only show proof of the open case. Proof of the proper open case
is similar.

Let (S1, I1) be an open normal informalogical space, and let (S1, I1) be
isomorphic to (S2, I2). We prove that (S2, I2) is also an open normal infor-
malogical space. In other words, we prove the intersection U ∩V of two open
intervals U and V in (S2, I2) is also an open interval.
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Suppose f is an isomorphism from (S1, I1) to (S2, I2). Then, f−1 is
an isomorphism from (S2, I2) to (S1, I1), and consequently f−1 is an order-
preserving bijective function. If U ∩ V is empty then it is a trivial open
interval. Suppose U ∩ V is non-empty and I ∈ U ∩ V . Then, since f−1 is
a bijective function, f−1(U ∩ V ) is non-empty, f−1(I) ∈ f−1(U ∩ V ), and
f−1(U ∩ V ) = f−1(U) ∩ f−1(V ). Since f−1 is an isomorphism from (S2, I2)
to (S1, I1) and U and V are two open intervals in (S2, I2), by Theorem 6.4,
f−1(U) and f−1(V ) are two open intervals in (S1, I1). Then, f

−1(U)∩f−1(V )
and consequently f−1(U ∩ V ) is an open interval in (S1, I1) since (S1, I1) is
open normal. Again by Theorem 6.4, f(f−1(U ∩ V )) = U ∩ V is an open
interval in (S2, I2). This proves the normality of (S2, I2). �

Theorem 6.9. Open (proper open) separatedness is an isomorphic invari-
ant.

Proof. We only show proof of the open case. Proof of the proper open case
is similar.

Let (S1, I1) be an open separated informalogical space, and let (S1, I1)
be isomorphic to (S2, I2). We prove that (S2, I2) is also open separated.

Let J1 and J2 be two distinct pieces of information in (S2, I2), or in
other words, J1, J2 ∈ S2 and J1 ̸= J2. Suppose f is an isomorphism from
(S1, I1) to (S2, I2) which implies that f−1 is an isomorphism from (S2, I2) to
(S1, I1). Then, f−1(J1), f

−1(J2) ∈ S1 and f−1(J1) ̸= f−1(J2). Since (S1, I1)
is open separated, there are open neighborhoods U1 and U2 of f−1(J1) and
f−1(J2), respectively, in (S1, I1) such that U1 ∩ U2 = ϕ. By Theorem 6.4,
f(U1) and f(U2) are neighborhoods of f(f

−1(J1)) = J1 and f(f−1(J2)) = J2,
respectively, in (S2, I2).

Next, we show that f(U1) ∩ f(U2) = ϕ. Otherwise, there is J ∈ f(U1) ∩
f(U2) ⊆ S2. Then, there is I ∈ S1 such that f(I) = J . J ∈ f(U1) and
J ∈ f(U2) imply that f(U1) and f(U2) are open neighborhoods of J . Thus, by
Theorem 6.4, f−1(f(U1)) = U1 and f−1(f(U2)) = U2 are open neighborhoods
of f−1(J) = f−1(f(I)) = I. Consequently, I ∈ U1 and I ∈ U2. However, this
is contradictory to U1 ∩ U2 = ϕ. Thus, we must have f(U1) ∩ f(U2) = ϕ.
This proves that (S2, I2) is open separated. �

Theorem 6.10. Open (proper open) first countability is an isomorphic in-
variant.
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Proof. We only show proof of the open case. Proof of the proper open case
is similar.

Let (S1, I1) be an open first countable informalogical space, and let
(S1, I1) be isomorphic to (S2, I2). We prove that (S2, I2) is also open first
countable, or in other words, each piece of information J in S2 has a countable
open local base.

Suppose f is an isomorphism from (S1, I1) to (S2, I2). Then f−1 is an
isomorphism from (S2, I2) to (S1, I1). There is I ∈ S1 such that f(I) =
J . Since (S1, I1) is open first countable, I has a countable open local base
U1, U2, ..., Un, ..., where Ui (i=1, 2, ..., n, ...) is an open neighborhood of I.
We show that f(U1), f(U2), ..., f(Un), ... is an open local base at J in (S2, I2).

By Theorem 6.4, f(Ui) (i=1, 2, ..., n, ...) is an open neighborhood of
f(I) = J . Thus, f(U1), f(U2), ..., f(Un), ... is a subset of the open neighbor-
hood system of J . Let V be an open neighborhood of J . Then, since f−1

is an isomorphism from (S2, I2) to (S1, I1), by Theorem 6.4, f−1(V ) is an
open neighborhood of I in (S1, I1). Since U1, U2, ..., Un, ... is an open local
base at I, there is Ui such that Ui ⊆ f−1(V ). Since f is a bijective function,
f(Ui) ⊆ f(f−1(V )) = V . This proves that f(U1), f(U2), ..., f(Un), ... is an
open local base at J . �
Theorem 6.11. Open (proper open) compactness is an isomorphic invari-
ant.

Proof. We only show proof of the open case. Proof of the proper open case
is similar.

Let (S1, I1) be an open compact informalogical space, and let (S1, I1) be
isomorphic to (S2, I2). We prove that (S2, I2) is also open compact, or in
other words, each open interval cover U of S2 has a finite subcover.

Suppose f is an isomorphism from (S1, I1) to (S2, I2). Then f−1 is
an isomorphism from (S2, I2) to (S1, I1). We first show that f−1(U) =
{f−1(U)|U ∈ U} is an open interval cover of S1. Since f−1 is an isomor-
phism and U is an open interval in S2, by Theorem 6.4, f−1(U) is an open
interval in S1. Let I ∈ S1. Then, f(I) ∈ S2. Since U is an open interval
cover of S2, there is U0 ∈ U such that f(I) ∈ U0, which means that U0 is an
open neighborhood of f(I) in S2. By Theorem 6.4, f−1(U0) is an open neigh-
borhood of f−1(f(I)) = I in S1, which means I ∈ f−1(U0). Thus, f

−1(U) is
an open interval cover of S1.

Since (S1, I1) is open compact, f−1(U) has a finite subcover f−1(U1),
f−1(U2), ..., f

−1(Un). We show that U1, U2, ..., Un is an open interval cover
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of S2. Let J ∈ S2 then f−1(J) ∈ S1. Since f−1(U1), f
−1(U2), ..., f

−1(Un)
is an open interval cover of S1, there is f−1(Ui) (1 ≤ i ≤ n) such that
f−1(J) ∈ f−1(Ui), which means that f−1(Ui) is an open neighborhood of
f−1(J) in (S1, I1). By Theorem 6.4, f(f−1(Ui)) = Ui is a neighborhood
of f(f−1(J)) = J in (S2, I2) which means J ∈ Ui. Now, we know that
U1, U2, ..., Un is really an open interval cover of S2. This means the open
interval cover U of S2 has a finite subcover. �

7. Conclusions and Future Work

In this paper, we show an undesirable property of closed convergence
of information nets. Then, we introduce open information intervals and
open neighborhoods, and thus introduce open convergence of information
nets. Open convergence avoids the undesirable property of closed conver-
gence. We point out a limitation of open convergence: for open convergence,
a Moore-Smith style convergence theory cannot be established for general
informalogical spaces. A Moore-Smith style convergence theory can only be
established for open normal informalogical spaces. We also introduce open
compactness of informalogical spaces and prove that an informalogical space
is open compact if and only if each information net in the informalogical
space has a subnet that open converges. Furthermore, we prove that open
limit uniqueness, open normality, open separatedness, open first countability
and open compactness are all isomorphic invariants.

Due to the importance of open normal informalogical spaces, in our fu-
ture work, we will investigate conditions that make an informalogical space
an open normal informalogical space. We already know that a linear infor-
malogical space is an open normal informalogical space from Theorem 2.1
in Section 2. However, linearality is a very strong requirement. We want to
find weaker conditions that still lead to open normality.

An isomorphism is a transformation from one informalogical space to
another, and isomorphic transformations preserve a lot of properties of an
informalogical space. However, isomorphism is a very strong requirement in
that it requires preservation of both the order of information in an informa-
logical space and the informalogy of the informalogical space. In our future
work, we will investigate weaker transformations and what properties of an
informalogical space are preserved under the weaker transformations.

In Section 2, an example informalogical space (S, I) is given to show
that the expression of an open interval is not generally unique and that the
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intersection of two open intervals is not generally an open interval. There
are not a lot of pieces of information in the informalogical space. In that
case, it is easier to understand the structure of the informalogical space and
relationship among the pieces of information in S if S is represented visually
by a directed graph. In our future work, we will investigate use of graphs to
represent S, especially when there are not a lot of pieces of information in S.

In our future work, we will generalize intervals, neighborhoods and inter-
val covers. We will also introduce topologies in an informalogical space.
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