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Abstract

In a previous paper, we presented a meaning based information theory in
which the core concept is an informalogical space. We introduced the con-
cepts of an information net in an informalogical space, a piece of limit in-
formation of an information net, a separated informalogical space and a first
countable informalogical space. We built a convergence theory of information
nets and applied the convergence theory to information sequences.

In this paper, we will introduce the concepts of decompositions of infor-
mation and informalogical spaces, and we will prove some theorems about
decompositions. We will introduce the concept of a compact informalogical
space and prove that an informalogical space is compact if and only if each
information net in the informalogical space has a subnet that converges. We
will introduce the concept of an isomorphism between two informalogical
spaces and the concept of an isomorphic invariant which is a property of
informalogical spaces that is preserved under isomorphisms. We will prove
that separatedness, limit uniqueness, first countability, and compactness are
all isomorphic invariants.

Key words: information, informalogy, informalogical space, decomposition,
compact, isomorphism.

1. Introduction

We are in an era of information explosion, especially after the introduction
of the Internet. To tackle the information explosion, various efforts have been
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made to expend the theoretical capacity and application areas of information
theory. (See [4], [5], [11], [14], [18], [33] and [51].) Much work has also been
done in the related fields of artificial intelligence and knowledge discovery.
(See [6], [15], [27], [29], [30], [32], [34], [36], [37], [38], [41], [42], [45], [46], [49],
[50] and [53].) In these fields, many contributions have been made to machine
learning or computational learning. (See [2], [3], [7], [8], [9], [16], [22], [23],
[24], [27], [28], [33], [36], [37], [38] and [39].) Another related and active field
is soft computing. Instead of computing with numbers, much research has
focused on tackling the problem of computing with words, meaning, inference
and reasoning based on meaning. (See [1], [10], [12], [17], [19], [20], [21], [26],
[31], [33], [35], [40], [43], [44], [47], [48], [52], [54], [55], [56], [57] and [58].)

In [13], we presented a theory of information that is based on meanings
of information and relationships among information. There, we introduced
some basic concepts and the core concept of our approach, informalogical
space. We introduced the concept of an information net in an informalogical
space and discussed convergence of information nets and a special case of
information nets, information sequences. We also introduced the concepts of
a separated informalogical space and a first countable informalogical space.
In this paper, we continue the theoretical build up in informalogical spaces.
Before introducing new concepts, we revisit some basic concepts that were
introduced in [13].

The contain relation between two pieces of information, and the union
and intersection operations on information were introduced in [13]. Basically,
suppose I and J are two pieces of information. If I can be inferred from J ,
then information I is contained in information J , and we can also say that
information J contains information I. This relation is represented as I ≼ J
or J ≽ I.

As for the union and intersection operations on a non-empty information
set A, basically, the union ∨A is the sum of all the pieces of information in
the information set A, and the intersection ∧A is the common information
that is contained in each piece of information in the information set A.

Below is the core concept of our approach, informalogical space, which
was introduced in [13].

Definition 1.1. ([13]) Let S be a non-empty information set, and let Ω =
∨S (i.e., Ω is the union of all the information in S). Let I be a non-empty
subset of S such that ∨I = Ω. We say that I is an informalogy, that S is
the space of the informalogy I, that I is an informalogy for the space S and
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that the pair (S, I) is an informalogical space, if the following two conditions
hold:

1. if I, J ∈ I, then I ∧ J ∈ I; and
2. if I0 ⊆ I, then ∨I0 ∈ I.

After revisit of the above basic concepts in [13], we will present two theo-
rems that contain some basic properties of information and information sets.
As the same as assumed in [13], all the pieces of information under discussion
are consistent information.

Theorem 1.1. Suppose that A, B, X and Y are pieces of information, and
0 is the zero information. Then,

1. A ≼ A;

2. if X ≼ A and A ≼ Y , then X ≼ Y ;

3. if A ≼ X and B ≼ X, then A ∨B ≼ X;

4. if X ≼ A and X ≼ B, then X ≼ A ∧B;

5. A ∧B ≼ A ∨B;

6. A ∨B = B ∨ A, A ∧B = B ∧ A;

7. if X ≼ A and Y ≼ B, then X ∨ Y ≼ A ∨B and X ∧ Y ≼ A ∧B;

8. X ∨ (A ∨B) = (X ∨ A) ∨B, X ∧ (A ∧B) = (X ∧ A) ∧B; and

9. A ≼ B, A ∨B = B and A ∧B = A are equivalent.

Proof. Items 1 and 2 come from Theorem 2.1 of [13]. Items 3 and 4 come
from Theorem 2.2 of [13]. Items 5, and 6 are obvious from the definitions of
union and intersection (see [13].)

7. X ≼ A ≼ A ∨ B and Y ≼ B ≼ A ∨ B. By 3, X ∨ Y ≼ A ∨ B.
X ∧ Y ≼ X ≼ A and X ∧ Y ≼ Y ≼ B. By 4, X ∧ Y ≼ A ∧B.

8. To prove X∨(A∨B) = (X∨A)∨B, we show X∨(A∨B) ≼ (X∨A)∨B
and (X∨A)∨B ≼ X∨(A∨B). A ≼ X∨A ≼ (X∨A)∨B. B ≼ (X∨A)∨B.
By 3, A ∨ B ≼ (X ∨ A) ∨ B. X ≼ X ∨ A ≼ (X ∨ A) ∨ B. Again, by 3, we
have X ∨ (A ∨ B) ≼ (X ∨ A) ∨ B. On the other hand, X ≼ X ∨ (A ∨ B)
and A ≼ A ∨ B ≼ X ∨ (A ∨ B). Thus, by 3, X ∨ A ≼ X ∨ (A ∨ B).
B ≼ A ∨B ≼ X ∨ (A ∨B). Again, by 3, (X ∨ A) ∨B ≼ X ∨ (A ∨B).

To prove X ∧ (A∧B) = (X ∧A)∧B, we show X ∧ (A∧B) ≼ (X ∧A)∧B
and (X∧A)∧B ≼ X∧(A∧B). X∧(A∧B) ≼ X andX∧(A∧B) ≼ A∧B ≼ A.
By 4, X ∧ (A ∧ B) ≼ X ∧ A. X ∧ (A ∧ B) ≼ A ∧ B ≼ B. Again, by 4,
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X ∧ (A∧B) ≼ (X ∧A)∧B. On the other hand, (X ∧A)∧B ≼ X ∧A ≼ A
and (X ∧A)∧B ≼ B, and thus by 4, (X ∧A)∧B ≼ A∧B. (X ∧A)∧B ≼
X ∧ A ≼ X. Again, by 4, (X ∧ A) ∧B ≼ X ∧ (A ∧B).

9. Assume A ≼ B. We prove A ∨ B = B and A ∧ B = A. A ≼ B and
B ≼ B. By 3, A∨B ≼ B. On the other hand, B ≼ A∨B. Thus, A∨B = B.
A∧B ≼ A. On the other hand, A ≼ A and A ≼ B. By 4, A ≼ A∧B. Thus,
A ∧B = A.

Assume A ∨B = B. Then, A ≼ A ∨B = B.
Assume A ∧B = A. Then, A = A ∧B ≼ B.
Now, we know that A ≼ B, A∨B = B and A∧B = A are equivalent. �

Theorem 1.2. Suppose that X, A and B are pieces of information, and A
and B are information sets. Then,

1. if A ≼ X for each A ∈ A, then ∨A ≼ X; if X ≼ A for each A ∈ A,
then X ≼ ∧A;

2. if for each A ∈ A, there is B ∈ B such that A ≼ B, then ∨A ≼ ∨B;
3. X ∨ (∨A) = ∨{X ∨ A|A ∈ A}, X ∧ (∧A) = ∧{X ∧ A|A ∈ A}; and
4. (∨A)∨ (∨B) = ∨{A∨B|A ∈ A, B ∈ B}, (∧A)∧ (∧B) = ∧{A∧B|A ∈

A, B ∈ B}.

Proof. Item 1 is obvious from the definitions of union and intersection (see
[13].)

2. Since for each A ∈ A there is B ∈ B such that A ≼ B, A ≼ ∨B.
Therefore, ∨A ≼ ∨B.

3. To prove X ∨ (∨A) = ∨{X ∨ A|A ∈ A}, we show X ∨ (∨A) ≼
∨{X ∨ A|A ∈ A} and ∨{X ∨ A|A ∈ A} ≼ X ∨ (∨A). X ≼ X ∨ A0 for
any A0 ∈ A. Thus, X ≼ ∨{X ∨ A|A ∈ A}. For each A ∈ A, A ≼ X ∨ A.
By 2, ∨A ≼ ∨{X ∨ A|A ∈ A}. Thus by 3 of Theorem 1.1, X ∨ (∨A) ≼
∨{X ∨ A|A ∈ A}. On the other hand, for each A ∈ A, X ∨ A ≼ X ∨ (∨A)
since A ≼ ∨A. Thus, by 1, ∨{X ∨ A|A ∈ A} ≼ X ∨ (∨A).

To proveX∧(∧A) = ∧{X∧A|A ∈ A}, we showX∧(∧A) ≼ ∧{X∧A|A ∈
A} and ∧{X ∧A|A ∈ A} ≼ X ∧ (∧A). For each A ∈ A, X ∧ (∧A) ≼ X ∧A
since ∧A ≼ A. By 1, X∧(∧A) ≼ ∧{X∧A|A ∈ A}. On the other hand, for a
A′ ∈ A, ∧{X ∧A|A ∈ A} ≼ X ∧A′. Thus, ∧{X ∧A|A ∈ A} ≼ X. For each
A0 ∈ A, ∧{X ∧ A|A ∈ A} ≼ X ∧ A0 ≼ A0. By 1, ∧{X ∧ A|A ∈ A} ≼ ∧A.
By 4 of Theorem 1.1, ∧{X ∧ A|A ∈ A} ≼ X ∧ (∧A).

4. Using the first formula of 3, we have (∨A)∨ (∨B) = ∨{(∨A)∨B|B ∈
B} = ∨{B ∨ (∨A)|B ∈ B} = ∨{∨{B ∨ A|A ∈ A}|B ∈ B} = ∨{B ∨
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A|A ∈ A, B ∈ B} = ∨{A ∨ B|A ∈ A, B ∈ B}. Similarly, we can obtain
(∧A)∧ (∧B) = ∧{A∧B|A ∈ A, B ∈ B} by using the second formula of 3. �

The above is the revisit of some basic concepts that were introduced in
[13] and two theorems that contain some basic properties of the union and
intersection operations on information.

In Section 2 we will introduce the concepts of decomposition of informa-
tion and decomposition of informalogies. We will also introduce the concept
of base for an informalogy and prove a theorem that establishes the relation-
ship of decomposition of a base and decomposition of an informalogy.

In Section 3 we will introduce the concept of a compact informalogical
space. We will prove that an informalogical space is compact if and only
if each information net in the informalogical space has a piece of cluster
information, which also means that an informalogical space is compact if
and only if each information net in the informalogical space has a subnet
that converges to a piece of information in the space.

In Section 4 we will we consider functions (or, maps) between two infor-
malogical spaces. We will introduce the concept of an isomorphism between
two informalogical spaces and prove some theorems about isomorphisms.

In Section 5 we will introduce the concept of an isomorphic invariant
which is a property of informalogical spaces that is preserved under isomor-
phisms. We will prove that separatedness, limit uniqueness, first countability
and compactness are all isomorphic invariants.

In Section 6, we will conclude and briefly discuss some of our future work.

2. Decompositions of Information and Informalogical Spaces

In this section, we will introduce the concept of decomposition of infor-
mation and informalogies. Decompositions will play an important role in
transferring study of information under consideration to study of more ba-
sic pieces of information. We will also introduce the concept of base for an
informalogy. First, we present a theorem that is useful later in this section.

Theorem 2.1. Suppose that A and B are two information sets.

1. If A ⊆ B, then ∨A ≼ ∨B and ∧B ≼ ∧A.

2. If for each B ∈ B there is A ∈ A such that B ≼ A, then ∨B ≼ ∨A.

3. If for each A ∈ A there exists a subset BA of B (i.e, BA ⊆ B) such that
A = ∨BA, then ∨A ≼ ∨B.
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4. If for each A ∈ A there exists a subset BA of B such that A = ∨BA and
B = ∪{BA|A ∈ A}, then ∨A = ∨B.

Proof. 1 and 2 are obvious from the definitions of union and intersection
of information.

3. For each A ∈ A, since BA ⊆ B, by 1, ∨BA ≼ ∨B. Thus, for each
A ∈ A, A = ∨BA ≼ ∨B. Therefore, ∨A ≼ ∨B.

4. By 3, ∨A ≼ ∨B. On the other hand, for each B ∈ B, there is A ∈ A
such that B ∈ BA since B = ∪{BA|A ∈ A}. Thus, B ≼ ∨BA = A. Then, by
2, ∨B ≼ ∨A. Now we know ∨A = ∨B. �

Now, we introduce the concept of decomposition.

Definition 2.1. Let A and B be two non-empty information sets. We say
that B is a decomposition information set of A if the following two conditions
hold:

1. for each B ∈ B, there is AB ∈ A such that B ≼ AB; and

2. for each A ∈ A, there is a subset BA of B (i.e., BA ⊆ B) such that
A = ∨BA.

When no confusions would arise, for short, we simply say that B is a decom-
position of A.

It’s obvious that any information set is a decomposition of itself. This
decomposition is a trivial decomposition.

By 2 and 3 of Theorem 2.1, ∨B = ∨A if B is a decomposition of A. If
the information set A contains only a single piece of information, then the
information set B is simply a decomposition of that piece of information. In
essence, decomposition is to divide a piece of information into smaller and
more basic pieces of information, but keep the total information unchanged.
After decomposition, some pieces of information in the original information
set may have common basic elements in the decomposition. Also, the study
of the original pieces of information might be transferred into the study of
the basic elements in the decomposition.

Informalogies in informalogical spaces are information sets. Thus, we can
discuss decompositions of informalogies.
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Definition 2.2. Let (S, I1) and (S, I2) be two informalogical spaces. We
say that informalogy I2 is a decomposition informalogy of informalogy I1 if,
as two information sets, I2 is a decomposition of I1. When no confusions
would arise, for short, we simply say that informalogy I2 is a decomposition
of informalogy I1

Definition 2.3. Let (S, I) be an informalogical space, and let B be a subset
of I (i.e., B ⊆ I). We say that B is a base for the informalogy I if for
each I ∈ I there is BI ⊆ B such that I = ∨BI , or in other words, B is a
decomposition of I.

If we have a base for an informalogy, then the informalogy can be con-
structed by forming the unions of all the subsets of the base. By the way, an
informalogy is a base for itself. This is a trivial base.

Theorem 2.2. Let (S, I1) and (S, I2) be two informalogical spaces, and let
B1 and B2 be two bases for the two informalogies I1 and I2 respectively. If,
as two information sets, B2 is a decomposition of B1, then, informalogy I2

is a decomposition of informalogy I1.

Proof. First, we show that for each J ∈ I2, there exists IJ ∈ I1 such that
J ≼ IJ . Since B2 is a base for I2, there exists a subset B2J of B2 such that
J = ∨B2J . Since B2 is a decomposition of B1, for each K ∈ B2J , there is
LK ∈ B1 such that K ≼ LK . Then, IJ ≡ ∨{LK |K ∈ B2J} ∈ I1, and by 2 of
Theorem 2.1, J = ∨B2J ≼ ∨{LK |K ∈ B2J} = IJ .

Next, we show that for each I ∈ I1 there exists a subset I2I of I2 such
that I = ∨I2I . Since B1 is a base for I1, there exists a subset B1I of B1

such that I = ∨B1I . Since B2 is a decomposition of B1, for each L ∈ B1I

there exists a subset B2L of B2 such that L = ∨B2L. Then, I2I ≡ ∪{B2L|L ∈
B1I} ⊆ B2 ⊆ I2, and by 4 of Theorem 2.1, I = ∨B1I = ∨I2I .

Now, we know that informalogy I2 is a decomposition of informalogy I1.
�

What Theorem 2.2 tells us is that decomposition relationship between the
bases for two informalogies implies decomposition relationship between the
two informalogies. Thus, judging whether one informalogy is a decomposition
of another informalogy may be reduced to checking whether a base for the
first informalogy is a decomposition of a base for the second informalogy. It
should be noted that generally the decomposition relationship between two
informalogies does not imply decomposition relationship between arbitrary
bases for the two informalogies.
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3. Compactness

In [13], we introduced the concept of information interval (or, interval,
for short) in an informalogical space. In this paper, based on the concept of
interval, we introduce the concept of interval cover of an information set in an
informalogical space, and based on the concept of interval cover we introduce
the concept of a compact informalogical space. First, we revisit the definitions
of information interval in an informalogical space and neighborhood of a piece
of information in an informalogical space.

Definition 3.1. ([13]) Let (S, I) be an informalogical space. Let X and Y
be two members of the informalogy I. We define [X,Y ] as [X, Y ] ≡ {I|I ∈
S and X ≼ I ≼ Y }. [X, Y ] is an information set which contains all the
information in S that ranges from the lower endpoint X to the upper endpoint
Y . We call [X,Y ] an information interval in the informalogical space (S, I),
or simply an interval. When [X,Y ] is non-empty, we call it a non-empty
interval; when [X, Y ] is empty, we call it an empty interval, and we use θ to
denote an empty interval.

When both [X1, Y1] and [X2, Y2] are information intervals, and [X1, Y1] ⊆
[X2, Y2], we say that [X1, Y1] is a subinterval of [X2, Y2].

In cases where no confusion is likely to result, we may simply use a single
letter such as U , V , etc. to represent an information interval.

A set of intervals is called a family of intervals, or an interval family.
We often use U to represent an interval family.

Definition 3.2. ([13]) Let (S, I) be an informalogical space, and let I ∈
S. Let [X,Y ] be a non-empty interval in the informalogical space. If I ∈
[X, Y ], which means X ≼ I ≼ Y , we say that the interval [X,Y ] is an
I-neighborhood, or neighborhood for short, of I, and we use U(I)[X, Y ] to
denote this relationship. We can simply use [X, Y ], U(I) or U to denote a
neighborhood if no confusion seems possible.

With the definition of interval introduced, we can introduce the concept
of an interval cover for a set of information in an informalogical space, and
then we introduce the concept of a compact informalogical space using the
concept of interval cover.

Definition 3.3. Let (S, I) be an informalogical space, let A be a set of in-
formation in the informalogical space (i.e., A ⊆ S), and let U be a family of
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intervals in the informalogical space. We say that the interval family U is an
interval cover of the information set A if A ⊆ ∪U , or in other words, each
piece of information in A is in some interval in the interval family U .

Definition 3.4. We say that an informalogical space (S, I) is a compact
informalogical space, or (S, I) is compact, if each interval cover of the space
S has a finite subcover.

In other words, when (S, I) is compact, then, for any interval cover U of
the space S, there are finite intervals U1, U2, ..., Un in the interval family U
such that A ⊆ ∪n

i=1Ui.
A compact informalogical space has some good properties. In [13], we

introduced information nets and built a convergence theory of information
nets which includes the concepts and theorems about limit information and
cluster information. Below, we prove that an informalogical space is compact
if and only if each information net in the informalogical space has a piece
of cluster information. First, we revisit the concepts related to information
nets in an informalogical space and their convergence.

Definition 3.5. ([25, Chapter 2]) We say that a binary relation ≥ directs a
set D, and that the pair (D,≥) is a directed set, if D is non-empty, and

1. if m, n and p are members of D such that m ≥ n and n ≥ p, then
m ≥ p;

2. if m ∈ D, then m ≥ m; and

3. if m and n are members of D, then there is p in D such that p ≥ m
and p ≥ n.

Definition 3.6. ([13]) Let (S, I) be an informalogical space, (D,≥) be a
directed set and T be a function on D whose values are pieces of information
in the space. That means, for each n ∈ D, there is one and only one Tn ∈ S
that corresponds to n. Then, {Tn, n ∈ D,≥} is called an information net
in the space S. In cases where no confusion would result, we simply use
{Tn, n ∈ D} or {Tn} to denote an information net.

Definition 3.7. ([13]) Let {Tn, n ∈ D,≥} be an information net, and let
[X, Y ] be an information interval. Then

1. we say that the information net {Tn, n ∈ D,≥} is in the information
interval [X,Y ] if Tn ∈ [X, Y ] for every n ∈ D;
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2. we say that the information net {Tn, n ∈ D,≥} is eventually in the
information interval [X, Y ] if there is an m ∈ D such that Tn ∈ [X, Y ]
for every n ∈ D that satisfies n ≥ m; and

3. we say that the information net {Tn, n ∈ D,≥} is frequently in the
information interval [X,Y ] if, for every m ∈ D, there is n ∈ D such
that n ≥ m and Tn ∈ [X, Y ].

Definition 3.8. ([13]) Let (S, I) be an informalogical space, {Tn, n ∈ D,≥}
be an information net in the space, and I be a piece of information in the
space. We say that the information net {Tn, n ∈ D,≥} converges to the
information I in the informalogical space (S, I), or say that {Tn, n ∈ D,≥}
I-converges to I, if the information net {Tn, n ∈ D,≥} is eventually in every
neighborhood of I. The information I is called a piece of I-limit information
of the information net {Tn, n ∈ D,≥} if {Tn, n ∈ D,≥} I-converges to I.
When no confusion would arise, for short, we simply say that the information
net {Tn, n ∈ D,≥} converges to information I, and that the information I
is a piece of limit information of the information net {Tn, n ∈ D,≥}.

Definition 3.9. ([13]) We say that a piece of information I is a piece of
cluster information of an information net {Tn} if the information net {Tn}
is frequently in every neighborhood of I.

Now, we prove the following theorem that establish the equivalent rela-
tionship between a compact informalogical space and the property that each
information net in the informalogical space has a subnet that converges. We
achieve this by first proving the following theorem about compactness and
an information net having a piece of cluster information.

Theorem 3.1. An informalogical space (S, I) is compact if and only if each
information net in the informalogical space has a piece of cluster information.

Proof. Suppose that (S, I) is a compact informalogical space, and suppose
that {Tn, n ∈ D,≥} is an information net in the informalogical space. If the
information net {Tn, n ∈ D,≥} has no cluster information, then, for each
piece of information I in the space S (i.e., I ∈ S), there is a neighborhood
UI of I (i.e., UI is an information interval and I ∈ UI) and nI ∈ D such that
Tn /∈ UI for n ∈ D and n ≥ nI . Let U ≡ {UI |I ∈ S}, then U is an interval
cover of S. Since (S, I) is compact, U has a finite subcover {UI1, UI2, ..., UIr}.
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Since D is a directed set, there is n0 ∈ D such that n0 ≥ nIj, j = 1, 2, ..., r.
Therefore, Tn0 /∈ UIj, j = 1, 2, ..., r. However, this is contradictory to that
{UI1, UI2, ..., UIr} is an interval cover of the space S. This proves that if
(S, I) is compact then each information net in the informalogical space has
a piece of cluster information.

Conversely, suppose that each information net in (S, I) has a piece of
cluster information, and suppose that U is an interval cover of S. We will
show that U has a finite subcover. Otherwise, for each finite subfamily n ≡
{U1, U2, ..., Ur} of U (i.e., Uj ∈ U , j = 1, 2, ..., r), there is Tn ∈ S such
that Tn /∈ Uj, j = 1, 2, ..., r. Let D ≡ {n|n is a finite subfamily of U}. We
will show that (D,⊇) is a directed set. (Here, ⊇ is the regular superset
relation between two sets.) For n1, n2, n3 ∈ D, if n1 ⊇ n2 and n2 ⊇ n3, then
n1 ⊇ n3. A set n is a superset of itself, meaning n ⊇ n. For any two members
n1, n2 ∈ D, let n = n1 ∪ n2. Then, since n1 and n2 are two finite subfamilies
of U , n is also a finite subfamily of U and thus n ∈ D. It’s obvious that
n ⊇ n1 and n ⊇ n2. Now, we know that (D,⊇) is a directed set. Therefore,
{Tn, n ∈ D,⊇} is an information net in the informalogical space (S, I).

Since each information net in (S, I) has a piece of cluster information,
let T be a piece of cluster information of the information net {Tn, n ∈ D,⊇}.
Since U is an interval cover of S, there is UT ∈ U such that T ∈ UT , which
means that UT is a neighborhood of T . Let n0 ≡ {UT} ∈ D. Then, since
T is a piece of cluster information of {Tn, n ∈ D,⊇}, there is an n ∈ D
such that n ⊇ n0 and Tn is in the neighborhood UT of T , or in other words,
Tn ∈ UT . However, on the other hand, n ⊇ n0 means n ⊇ {UT} which
implies UT ∈ n. Thus, by the choice of Tn, Tn is not in any interval in n,
which implies Tn /∈ UT . Now, we have Tn ∈ UT and Tn /∈ UT at the same
time. This contradiction shows that U must have a finite subcover. �

Theorem 5.1 of [13] shows that a piece of information is a piece of cluster
information of an information net if and only if the information net has a
subnet that converges to that piece of information. Thus, by the preceding
theorem, we can have the following corollary.

Corollary 3.1. An informalogical space (S, I) is compact if and only if each
information net in the informalogical space has a subnet that converges to a
piece of information in (S, I).
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4. Isomorphisms

In this section we consider functions between two informalogical spaces.
A function from informalogical space (S1, I1) to informalogical space (S2, I2)
is a function from the information set S1 to the information set S2.

Definition 4.1. Let f be a function from (S1, I1) to (S2, I2). We say that
f is an order-preserving function if I ≼ J in S1 implies f(I) ≼ f(J) in S2,
and f(I) ≼ f(J) in S2 implies I ≼ J in S1.

It’s clear that an order-preserving function preserves the contain relation-
ship between two pieces of information. It’s easy to see that, for a bijective
function f , f−1 is order-preserving if and only if f itself is order-preserving.
(Here, f−1 is the inverse function of f .)

Theorem 4.1. Let f be an order-preserving bijective function from (S1, I1)
to (S2, I2), and let Ω1 = ∨S1 and Ω2 = ∨S2. Then, f(0) = 0 and f(Ω1) = Ω2.

Proof. We know that in an informalogical space (S, I), the informalogy
I (and thus the space S) contains at least two pieces of information, the
zero information 0 and the reference information Ω = ∨I = ∨S (See [13].)
Thus, we know that 0,Ω1 ∈ I1 ⊆ S1 and 0,Ω2 ∈ I2 ⊆ S2. Since f is a
bijective function from S1 to S2, there is I ∈ S1 such that f(I) = 0. Since
f(I) = 0 ≼ f(0) and f is an order-preserving function, I ≼ 0. Thus, I = 0,
and therefore, f(0) = 0. Again, since f is a bijective function from S1 to S2,
there is J ∈ S1 such that f(J) = Ω2. Since f(Ω1) ≼ Ω2 = f(J), and f is an
order-preserving function, Ω1 ≼ J . Thus, J = Ω1 and therefore f(Ω1) = Ω2.

�

Theorem 4.2. Let f be an order-preserving bijective function from (S1, I1)
to (S2, I2). Let A,B ∈ S1. Then, f({I|I ∈ S1 and A ≼ I ≼ B}) = {J |J ∈
S2 and f(A) ≼ J ≼ f(B)}.

Proof. Let X ∈ f({I|I ∈ S1 and A ≼ I ≼ B}). Then, there is I ∈ S1

satisfying A ≼ I ≼ B such that f(I) = X. Since f is an order-preserving
function, f(A) ≼ f(I) ≼ f(B). This means f(A) ≼ X ≼ f(B). Thus,
X ∈ {J |J ∈ S2 and f(A) ≼ J ≼ f(B)}.

On the other hand, let X ∈ {J |J ∈ S2 and f(A) ≼ J ≼ f(B)}. Then,
f(A) ≼ X ≼ f(B). Since f is a bijective function, there is I ∈ S1 such
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that f(I) = X. Thus, f(A) ≼ f(I) ≼ f(B). Since f is order-preserving,
A ≼ I ≼ B. That is, X ∈ f({I|I ∈ S1 and A ≼ I ≼ B}).

Combination of the above two facts shows f({I|I ∈ S1 and A ≼ I ≼
B}) = {J |J ∈ S2 and f(A) ≼ J ≼ f(B)}. �

Definition 4.2. Let (S1, I1) and (S2, I2) be two informalogical spaces, let
f be a bijective function from (S1, I1) to (S2, I2), and let f be an order-
preserving function. We say that f is an isomorphism from (S1, I1) to
(S2, I2) and that (S1, I1) is isomorphic to (S2, I2) if I ∈ I1 implies f(I) ∈ I2

and f(I) ∈ I2 implies I ∈ I1.

It’s obvious that f−1 is an isomorphism from (S2, I2) to (S1, I1) if f is an
isomorphism from (S1, I1) to (S2, I2). It’s also easy to verify that g • f is an
isomorphism from (S1, I1) to (S3, I3) if f is an isomorphism from (S1, I1) to
(S2, I2) and g is an isomorphism from (S2, I2) to (S3, I3). (Here, “•” is the
function composition.)

Theorem 4.3. Let f be an isomorphism from (S1, I1) to (S2, I2), and let
[X, Y ] be an information interval in (S1, I1). Then, f([X, Y ]) = [f(X), f(Y )]
is an information interval in (S2, I2).

Proof. [X, Y ] being an information interval in (S1, I1) implies X, Y ∈ I1.
Since f is an isomorphism, f(X), f(Y ) ∈ I2 and thus, [f(X), f(Y )] is an
information interval in (S2, I2). Since f is an order-preserving bijective func-
tion, by Theorem 4.2, f([X, Y ]) = [f(X), f(Y )]. �

Below, we prove a theorem that shows the neighborhood system of a piece
of information is preserved under an isomorphism.

Theorem 4.4. Let f be an order-preserving bijective function from (S1, I1)
to (S2, I2). Then, the following two statements are equivalent.

1. f is an isomorphism.

2. [f(X), f(Y )] is a neighborhood of f(I) in (S2, I2) if and only if [X, Y ]
is a neighborhood of I in (S1, I1).

Proof. We know that f−1 is an isomorphism from (S2, I2) to (S1, I1) if f
is an isomorphism from (S1, I1) to (S2, I2).

First, suppose 1. is true. We prove 2. is true. Assume [X,Y ] is a neigh-
borhood of I in (S1, I1), then, X, Y ∈ I1 and X ≼ I ≼ Y . Since f is an
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isomorphism from (S1, I1) to (S2, I2), f(X), f(Y ) ∈ I2 and f(X) ≼ f(I) ≼
f(Y ). This means that [f(X), f(Y )] is a neighborhood of f(I) in (S2, I2).
Conversely, assume [f(X), f(Y )] is a neighborhood of f(I) in (S2, I2). Since
f−1 is an isomorphism from (S2, I2) to (S1, I1), then by what we just proved,
[f−1(f(X)), f−1(f(Y ))] = [X,Y ] is a neighborhood of f−1(f(I)) = I in
(S1, I1).

Second, suppose 2. is true. We prove 1. is true, which means we prove
that f(I) ∈ I2 if and only if I ∈ I1. Assume I ∈ I1. Then, [I, I] is
a neighborhood of I in (S1, I1). By 2., [f(I), f(I)] is a neighborhood of
f(I) in (S2, I2), which implies f(I) ∈ I2. Conversely, assume f(I) ∈ I2.
Then, [f(I), f(I)] is a neighborhood of f(I) in (S2, I2). By 2., [I, I] is a
neighborhood of I in (S1, I1), which implies I ∈ I1. �

With the establishment of the above theorem about the neighborhood
system of a piece of information under an isomorphism, we will prove a
theorem that shows the convergence of an information net is preserved under
an isomorphism.

Let f be an isomorphism from (S1, I1) to (S2, I2). Let {Tn, n ∈ D,≥} be
an information net in (S1, I1). Then, {f(Tn), n ∈ D,≥} is an information
net in (S2, I2). The following theorem establishes the relationship between
the convergence of the two information nets in the two informalogical spaces.

Theorem 4.5. Let f be an isomorphism from (S1, I1) to (S2, I2). The in-
formation net {f(Tn), n ∈ D,≥} converges to f(T ) in (S2, I2) if and only if
the information net {Tn, n ∈ D,≥} converges to T in (S1, I1).

Proof. Assume that {Tn, n ∈ D,≥} converges to T in (S1, I1). We con-
sider {f(Tn), n ∈ D,≥} in (S2, I2). Let [f(X), f(Y )] be a neighborhood of
f(T ) in (S2, I2). By Theorem 4.4, [X,Y ] is a neighborhood of T in (S1, I1).
Since {Tn, n ∈ D,≥} converges to T in (S1, I1), there is p ∈ D such that
Tn ∈ [X, Y ] for n ∈ D satisfying n ≥ p. Tn ∈ [X, Y ] means that [X,Y ] is
a neighborhood of Tn in (S1, I1). By Theorem 4.4, [f(X), f(Y )] is a neigh-
borhood of f(Tn) in (S2, I2). This means f(Tn) ∈ [f(X), f(Y )] for n ∈ D
satisfying n ≥ p. Thus, {f(Tn), n ∈ D,≥} converges to f(T ) in (S2, I2).

Conversely, assume that the information net {f(Tn), n ∈ D,≥} converges
to f(T ) in (S2, I2). Then, since f−1 is an isomorphism from (S2, I2) to
(S1, I1), by what we just proved, the information net {f−1(f(Tn)), n ∈ D,≥
} = {Tn, n ∈ D,≥} converges to f−1(f(T )) = T in (S1, I1). �
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By the preceding theorem and Theorem 4.3 of [13] we can have the fol-
lowing corollary.

Corollary 4.1. Let f be an isomorphism from (S1, I1) to (S2, I2), let A be
an information set in (S1, I1) and let I be a piece of information in (S1, I1).
Then, f(I) is an accumulation information of the information set f(A) in
(S2, I2) if and only if I is an accumulation information of the information
set A in (S1, I1).

5. Isomorphic Invariants

In this section we discuss properties of informalogical spaces that are
preserved under isomorphisms.

Definition 5.1. We say that a property of informalogical spaces is an iso-
morphic invariant if the property which when possessed by an informalogical
space is also possessed by each isomorphic informalogical space.

Paper [13] introduced the concept of a separated informalogical space
and proved that, if exists, the limit information of an information net in a
separated informalogical space is unique. Here, we prove that separatedness
is an isomorphic invariant. First, we revisit the definition of a separated
informalogical space. In the definition, θ is the empty information interval
(see [13].)

Definition 5.2. ([13]) Let (S, I) be an informalogical space. We say that
(S, I) is a separated informalogical space, or say that it is separated, if for
every two distinct pieces of information I and J in the space, i.e., I, J ∈ S
and I ̸= J , there exist neighborhoods U and V of I and J , respectively, such
that U ∩ V = θ.

Theorem 5.1. Separatedness is an isomorphic invariant.

Proof. Let (S1, I1) be a separated informalogical space, and let (S1, I1) be
isomorphic to (S2, I2). We will prove that (S2, I2) is also separated.

Let J1 and J2 be two distinct pieces of information in (S2, I2), or in other
words, J1, J2 ∈ S2 and J1 ̸= J2. Suppose f is an isomorphism from (S1, I1) to
(S2, I2). Then, f−1(J1), f

−1(J2) ∈ S1 and f−1(J1) ̸= f−1(J2). Since (S1, I1)
is separated, there are neighborhoods [X1, Y1] and [X2, Y2] of f

−1(J1) and
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f−1(J2), respectively, in (S1, I1) such that [X1, Y1]∩[X2, Y2] = θ. By Theorem
4.4, [f(X1), f(Y1)] and [f(X2), f(Y2)] are neighborhoods of f(f−1(J1)) = J1
and f(f−1(J2)) = J2, respectively, in (S2, I2).

Next, we show that [f(X1), f(Y1)]∩[f(X2), f(Y2)] = θ. Otherwise, there is
J ∈ [f(X1), f(Y1)]∩ [f(X2), f(Y2)] ⊆ S2. J ∈ [f(X1), f(Y1)] implies f(X1) ≼
J ≼ f(Y1)] and J ∈ [f(X2), f(Y2)] implies f(X2) ≼ J ≼ f(Y2)]. Since f is
an isomorphism from (S1, I1) to (S2, I2), there is I ∈ S1 such that f(I) = J .
Thus, f(X1) ≼ f(I) ≼ f(Y1) and f(X2) ≼ f(I) ≼ f(Y2). Again, since f is an
isomorphism from (S1, I1) to (S2, I2), we haveX1 ≼ I ≼ Y1 andX2 ≼ I ≼ Y2.
These mean that I ∈ [X1, Y1] and I ∈ [X2, Y2]. Thus, I ∈ [X1, Y1] ∩ [X2, Y2].
However, this is contradictory to the fact that [X1, Y1] ∩ [X2, Y2] = θ. Thus,
we must have [f(X1), f(Y1)] ∩ [f(X2), f(Y2)] = θ. This proves that (S2, I2)
is separated. �

Theorem 4.2 of [13] showed that an informalogical space is separated if
and only if every information net in the informalogical space has at most
one piece of limit information. Thus, by the preceding theorem, we have the
following corollary.

Corollary 5.1. Limit uniqueness is an isomorphic invariant.

Paper [13] introduced the concept of a first countable informalogical space.
Here, we prove that first countability is an isomorphic invariant. First, we re-
visit the definitions of neighborhood system, base for a neighborhood system,
and first countable informalogical space from [13].

Definition 5.3. ([13]) We say that the family of all neighborhoods of a piece
of information I is the neighborhood system of I, and we often use UI to
denote the neighborhood system of I.

If U0 ⊆ UI , and every neighborhood of I contains a member of U0 as a
subinterval, we say that U0 is a base for the neighborhood system of I, or a
local base at I.

Definition 5.4. ([13]) Let (S, I) be an informalogical space. We say that
the informalogical space is first countable if the neighborhood family of each
piece of information in the space has a countable base. In other words, there
is a countable local base at each piece of information in the space.

Theorem 5.2. First countability is an isomorphic invariant.
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Proof. Let (S1, I1) be a first countable informalogical space, and let (S1, I1)
be isomorphic to (S2, I2). We will prove that (S2, I2) is also first countable,
or in other words, each piece of information J in S2 has a countable local
base.

Suppose f is an isomorphism from (S1, I1) to (S2, I2). Then, there
is I ∈ S1 such that f(I) = J . Since (S1, I1) is first countable, I has
a countable local base [X1, Y1], [X2, Y2], ..., [Xn, Yn], .... We will show that
[f(X1), f(Y1)], [f(X2), f(Y2)], ..., [f(Xn), f(Yn)], ... is a local base at J in (S2, I2).

By Theorem 4.4, [f(Xi), f(Yi)] (i=1, 2, ..., n, ...) is a neighborhood
of J . Thus, [f(X1), f(Y1)], [f(X2), f(Y2)], ..., [f(Xn), f(Yn)], ... is a subset of
the neighborhood system of J . Let [A,B] be a neighborhood of J . Then,
by Theorem 4.4, [f−1(A), f−1(B)] is a neighborhood of I in (S1, I1). Since
[X1, Y1], [X2, Y2], ..., [Xn, Yn], ... is a local base at I, there is [Xi, Yi] such that
[Xi, Yi] ⊆ [f−1(A), f−1(B)]. Thus, f−1(A) ≼ Xi ≼ Yi ≼ f−1(B). Since
f is an isomorphism, f(f−1(A)) ≼ f(Xi) ≼ f(Yi) ≼ f(f−1(B)) which is
A ≼ f(Xi) ≼ f(Yi) ≼ B. This means [f(Xi), f(Yi)] ⊆ [A,B]. Now, we know
that [f(X1), f(Y1)], [f(X2), f(Y2)], ..., [f(Xn), f(Yn)], ... is a local base at J .
�

We just introduced the concept of a compact informalogical space in Sec-
tion 3 of this paper. Now, we prove that compactness is an isomorphic
invariant.

Theorem 5.3. Compactness is an isomorphic invariant.

Proof. Let (S1, I1) be a compact informalogical space, and let (S1, I1) be
isomorphic to (S2, I2). We will prove that (S2, I2) is also compact, or in
other words, each interval cover U of S2 has a finite subcover.

Suppose f is an isomorphism from (S1, I1) to (S2, I2). We first show that
f−1(U) = {f−1([X,Y ])|[X,Y ] ∈ U} is an interval cover of S1. By Theorem
4.3, f−1([X, Y ]) = [f−1(X), f−1(Y )]) is an interval in S1. We will show that
{[f−1(X), f−1(Y )]|[X,Y ] ∈ U} is an interval cover of S1. Let I ∈ S1. Then,
f(I) ∈ S2. Since U is an interval cover of S2, there is [X0, Y0] ∈ U such that
f(I) ∈ [X0, Y0], which means that [X0, Y0] is a neighborhood of f(I) in S2.
By Theorem 4.4, [f−1(X0), f

−1(Y0)] is a neighborhood of f−1(f(I)) = I in S1,
which means I ∈ [f−1(X0), f

−1(Y0)]. Thus, {[f−1(X), f−1(Y )]|[X, Y ] ∈ U}
is an interval cover of S1.

Since (S1, I1) is compact, {[f−1(X), f−1(Y )]|[X, Y ] ∈ U} has a finite
subcover [f−1(X1), f

−1(Y1)], [f
−1(X2), f

−1(Y2)], ..., [f
−1(Xn), f

−1(Yn)]. We
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will show that [X1, Y1], [X2, Y2], ..., [Xn, Yn] is an interval cover of S2. Let
J ∈ S2. Then, there is I ∈ S1 such that f(I) = J . Since [f−1(X1), f

−1(Y1)],
[f−1(X2), f

−1(Y2)], ..., [f
−1(Xn), f

−1(Yn)] is an interval cover of S1, there is
[f−1(Xi), f

−1(Yi)] (1 ≤ i ≤ n) such that I ∈ [f−1(Xi), f
−1(Yi)], which means

that [f−1(Xi), f
−1(Yi)] is a neighborhood of I in (S1, I1). By Theorem 4.4,

[f(f−1(Xi)), f(f
−1(Yi))] = [Xi, Yi] is a neighborhood of f(I) = J in (S2, I2)

which means J ∈ [Xi, Yi]. Now, we know that [X1, Y1], [X2, Y2], ..., [Xn, Yn]
is an interval cover of S2. This means the interval cover U of S2 has a finite
subcover. �

6. Conclusions and Future Work

This paper introduces decompositions of information and informalogical
spaces, and proves some theorems about decompositions. This paper also
introduces compact informalogical spaces and proves that an informalogi-
cal space is compact if and only if each information net in the informa-
logical space has a subnet that converges. This paper further introduces
isomorphisms between two informalogical spaces and isomorphic invariants
which are properties of informalogical spaces that are preserved under iso-
morphisms. This paper proves that separatedness, limit uniqueness, first
countability, and compactness are all isomorphic invariants.

In our future work, we will investigate decompositions of information and
informalogical spaces. Decompositions of information will play an important
role in transferring study of information of interest to study of more basic
pieces of information. The decompositions of an informalogical space (S, I)
introduced in this paper only decompose the informalogy I but keep the
space S the same. In our future work, we will investigate more general
decompositions that not only decompose informalogies but also decompose
spaces. We will also investigate subbase that can generate a base for an
informalogy that is introduced in this paper.

Up to now, the neighborhood system of a piece of information in an
informalogical space (S, I) is built with closed information intervals (i.e., in-
tervals containing two pieces of endpoint information), and the convergence
theory of information nets is thus built with closed information intervals.
In our future work, we will investigate open information intervals, neighbor-
hood system built with open information intervals, and convergence theory
of information nets built with open information intervals.
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In our future work, we will also investigate functions between two in-
formalogical spaces that possess only part the properties of an isomorphism
between two informalogical spaces. Those functions will be more general.
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